BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 26310995)

  • 1. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures.
    Suzuki Y; Endo M; Sugiyama H
    Nat Commun; 2015 Aug; 6():8052. PubMed ID: 26310995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional DNA Origami Lattices Assembled on Lipid Bilayer Membranes.
    Suzuki Y; Sugiyama H; Endo M
    Methods Mol Biol; 2023; 2639():83-90. PubMed ID: 37166712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy.
    Endo M
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion.
    Woo S; Rothemund PW
    Nat Commun; 2014 Sep; 5():4889. PubMed ID: 25205175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-assisted large-scale ordering of DNA origami tiles.
    Aghebat Rafat A; Pirzer T; Scheible MB; Kostina A; Simmel FC
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7665-8. PubMed ID: 24894973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface.
    Suzuki Y; Endo M; Yang Y; Sugiyama H
    J Am Chem Soc; 2014 Feb; 136(5):1714-7. PubMed ID: 24428846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of DNA Origami Lattice Formation at Solid-Liquid Interfaces.
    Kielar C; Ramakrishnan S; Fricke S; Grundmeier G; Keller A
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44844-44853. PubMed ID: 30501167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice.
    Bhanjadeo MM; Nayak AK; Subudhi U
    Biochem Biophys Res Commun; 2017 Apr; 485(2):492-498. PubMed ID: 28189681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation-dependent assembly of hexagonal DNA origami lattices on SiO
    Pothineni BK; Grundmeier G; Keller A
    Nanoscale; 2023 Aug; 15(31):12894-12906. PubMed ID: 37462427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid bilayer-assisted dynamic self-assembly of hexagonal DNA origami blocks into monolayer crystalline structures with designed geometries.
    Suzuki Y; Kawamata I; Watanabe K; Mano E
    iScience; 2022 May; 25(5):104292. PubMed ID: 35573202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Protein Adsorption Through DNA Origami Masks.
    Ramakrishnan S; Grundmeier G; Keller A
    Methods Mol Biol; 2018; 1811():253-262. PubMed ID: 29926458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling Up DNA Origami Lattice Assembly.
    Xin Y; Shen B; Kostiainen MA; Grundmeier G; Castro M; Linko V; Keller A
    Chemistry; 2021 Jun; 27(33):8564-8571. PubMed ID: 33780583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
    Wang P; Gaitanaros S; Lee S; Bathe M; Shih WM; Ke Y
    J Am Chem Soc; 2016 Jun; 138(24):7733-40. PubMed ID: 27224641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supported Fluid Lipid Bilayer as a Scaffold to Direct Assembly of RNA Nanostructures.
    Dabkowska AP; Michanek A; Jaeger L; Chworos A; Nylander T; Sparr E
    Methods Mol Biol; 2017; 1632():107-122. PubMed ID: 28730435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.
    Yonamine Y; Cervantes-Salguero K; Minami K; Kawamata I; Nakanishi W; Hill JP; Murata S; Ariga K
    Phys Chem Chem Phys; 2016 May; 18(18):12576-81. PubMed ID: 27091668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ Surface Charge Density Visualization of Self-assembled DNA Nanostructures after Ion Exchange.
    Møller Sønderskov S; Hyldgaard Klausen L; Amland Skaanvik S; Han X; Dong M
    Chemphyschem; 2020 Jul; 21(13):1474-1482. PubMed ID: 32330354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of lattice defects in mixed DNA origami monolayers.
    Xin Y; Ji X; Grundmeier G; Keller A
    Nanoscale; 2020 May; 12(17):9733-9743. PubMed ID: 32324191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From nonfinite to finite 1D arrays of origami tiles.
    Wu TC; Rahman M; Norton ML
    Acc Chem Res; 2014 Jun; 47(6):1750-8. PubMed ID: 24803094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes.
    Qutbuddin Y; Krohn JH; Brüggenthies GA; Stein J; Gavrilovic S; Stehr F; Schwille P
    J Phys Chem B; 2021 Dec; 125(48):13181-13191. PubMed ID: 34818013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.