These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

934 related articles for article (PubMed ID: 26311018)

  • 1. Genomics of crop wild relatives: expanding the gene pool for crop improvement.
    Brozynska M; Furtado A; Henry RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1070-85. PubMed ID: 26311018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the conservation of crop wild relatives in England.
    Fielder H; Brotherton P; Hosking J; Hopkins JJ; Ford-Lloyd B; Maxted N
    PLoS One; 2015; 10(6):e0130804. PubMed ID: 26110773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies.
    Wambugu PW; Henry R
    Mol Ecol; 2022 Apr; 31(8):2207-2222. PubMed ID: 35170117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraspecific diversification of the crop wild relative Brassica cretica Lam. using demographic model selection.
    Kioukis A; Michalopoulou VA; Briers L; Pirintsos S; Studholme DJ; Pavlidis P; Sarris PF
    BMC Genomics; 2020 Jan; 21(1):48. PubMed ID: 31937246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction.
    Syfert MM; Castañeda-Álvarez NP; Khoury CK; Särkinen T; Sosa CC; Achicanoy HA; Bernau V; Prohens J; Daunay MC; Knapp S
    Am J Bot; 2016 Apr; 103(4):635-51. PubMed ID: 27026215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reap the crop wild relatives for breeding future crops.
    Bohra A; Kilian B; Sivasankar S; Caccamo M; Mba C; McCouch SR; Varshney RK
    Trends Biotechnol; 2022 Apr; 40(4):412-431. PubMed ID: 34629170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and utilizing crop genome diversity via high-resolution genotyping.
    Voss-Fels K; Snowdon RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1086-94. PubMed ID: 27003869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of crop wild relative species identifies areas globally for in situ conservation.
    Vincent H; Amri A; Castañeda-Álvarez NP; Dempewolf H; Dulloo E; Guarino L; Hole D; Mba C; Toledo A; Maxted N
    Commun Biol; 2019; 2():136. PubMed ID: 31044161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress, challenges and the future of crop genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2015 Apr; 24():71-81. PubMed ID: 25703261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding.
    Mascher M; Schreiber M; Scholz U; Graner A; Reif JC; Stein N
    Nat Genet; 2019 Jul; 51(7):1076-1081. PubMed ID: 31253974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms.
    Abdul Aziz M; Masmoudi K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of Crop Wild Relative Conservation and Use in West Asia and North Africa.
    Maxted N; Magos Brehm J; Abulaila K; Al-Zein MS; Kehel Z; Yazbek M
    Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking the secondary gene-pool of barley with next-generation sequencing.
    Wendler N; Mascher M; Nöh C; Himmelbach A; Scholz U; Ruge-Wehling B; Stein N
    Plant Biotechnol J; 2014 Oct; 12(8):1122-31. PubMed ID: 25040223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.
    Bohra A; Jha UC; Kishor PB; Pandey S; Singh NP
    Biotechnol Adv; 2014 Dec; 32(8):1410-28. PubMed ID: 25196916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic innovation for crop improvement.
    Bevan MW; Uauy C; Wulff BB; Zhou J; Krasileva K; Clark MD
    Nature; 2017 Mar; 543(7645):346-354. PubMed ID: 28300107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae).
    Dillon SL; Shapter FM; Henry RJ; Cordeiro G; Izquierdo L; Lee LS
    Ann Bot; 2007 Nov; 100(5):975-89. PubMed ID: 17766842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and visual monitoring of alien sequences using crop wild relatives specific oligo-painting: The case of cucumber chromosome engineering.
    Zhao Q; Jin K; Hu W; Qian C; Li J; Zhang W; Lou Q; Chen J
    Plant Sci; 2022 Jun; 319():111199. PubMed ID: 35487648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of genomic changes with crop domestication and breeding.
    Shi J; Lai J
    Curr Opin Plant Biol; 2015 Apr; 24():47-53. PubMed ID: 25656221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritising in situ conservation of crop resources: a case study of African cowpea (Vigna unguiculata).
    Moray C; Game ET; Maxted N
    Sci Rep; 2014 Jun; 4():5247. PubMed ID: 24936740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.