These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 26311580)

  • 1. Effects of an antihistamine on carbon and nutrient recycling in streams.
    Jonsson M; Ershammar E; Fick J; Brodin T; Klaminder J
    Sci Total Environ; 2015 Dec; 538():240-5. PubMed ID: 26311580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antihistamines and aquatic insects: bioconcentration and impacts on behavior in damselfly larvae (Zygoptera).
    Jonsson M; Fick J; Klaminder J; Brodin T
    Sci Total Environ; 2014 Feb; 472():108-11. PubMed ID: 24291135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities.
    Kominoski JS; Marczak LB; Richardson JS
    Ecology; 2011 Jan; 92(1):151-9. PubMed ID: 21560685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.
    Manning DW; Rosemond AD; Gulis V; Benstead JP; Kominoski JS; Maerz JC
    Ecol Appl; 2016 Sep; 26(6):1745-1757. PubMed ID: 27755690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies.
    Cornejo A; Pérez J; Alonso A; López-Rojo N; Monroy S; Boyero L
    J Environ Manage; 2020 Jun; 263():110425. PubMed ID: 32179487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.
    Iñiguez-Armijos C; Rausche S; Cueva A; Sánchez-Rodríguez A; Espinosa C; Breuer L
    Ecol Evol; 2016 Jul; 6(14):4849-65. PubMed ID: 27547318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?
    Danger M; Cornut J; Chauvet E; Chavez P; Elger A; Lecerf A
    Ecology; 2013 Jul; 94(7):1604-13. PubMed ID: 23951720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms.
    Pestana JL; Alexander AC; Culp JM; Baird DJ; Cessna AJ; Soares AM
    Environ Pollut; 2009; 157(8-9):2328-34. PubMed ID: 19398147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems.
    Atwood TB; Hammill E; Richardson JS
    Glob Chang Biol; 2014 Nov; 20(11):3386-96. PubMed ID: 24753392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review.
    Schaller J; Brackhage C; Mkandawire M; Dudel EG
    Sci Total Environ; 2011 Nov; 409(23):4891-8. PubMed ID: 21907393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Litter Quality Modulates Effects of Dissolved Nitrogen on Leaf Decomposition by Stream Microbial Communities.
    Jabiol J; Lecerf A; Lamothe S; Gessner MO; Chauvet E
    Microb Ecol; 2019 May; 77(4):959-966. PubMed ID: 30899980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams.
    Martínez A; Pérez J; Molinero J; Sagarduy M; Pozo J
    Sci Total Environ; 2015 Jan; 503-504():251-7. PubMed ID: 24962591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the antibiotic ciprofloxacin on stream microbial communities and detritivorous macroinvertebrates.
    Maul JD; Schuler LJ; Belden JB; Whiles MR; Lydy MJ
    Environ Toxicol Chem; 2006 Jun; 25(6):1598-606. PubMed ID: 16764479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of microbial communities to multiple stressors associated with litter decomposition of Pterocarya stenoptera.
    Pu G; Tong J; Su A; Ma X; Du J; Lv Y; Tian X
    J Environ Sci (China); 2014 May; 26(5):1001-13. PubMed ID: 25079630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Litter P content drives consumer production in detritus-based streams spanning an experimental N:P gradient.
    Demi LM; Benstead JP; Rosemond AD; Maerz JC
    Ecology; 2018 Feb; 99(2):347-359. PubMed ID: 29266195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungistatic effect of agrochemical and pharmaceutical fungicides on non-target aquatic decomposers does not translate into decreased fungi- or invertebrate-mediated decomposition.
    Pimentão AR; Pascoal C; Castro BB; Cássio F
    Sci Total Environ; 2020 Apr; 712():135676. PubMed ID: 31787296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of aluminium and phosphorus on microbial leaf litter processing in acidified streams: a microcosm approach.
    Clivot H; Charmasson F; Felten V; Boudot JP; Guérold F; Danger M
    Environ Pollut; 2014 Mar; 186():67-74. PubMed ID: 24361567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.
    Talk A; Kublik S; Uksa M; Engel M; Berghahn R; Welzl G; Schloter M; Mohr S
    J Environ Sci (China); 2016 Aug; 46():116-25. PubMed ID: 27521943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.