BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26311846)

  • 1. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics.
    He Y; Haque MM; Stuehr DJ; Lu HP
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11835-40. PubMed ID: 26311846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational states and fluctuations in endothelial nitric oxide synthase under calmodulin regulation.
    He Y; Haque MM; Stuehr DJ; Lu HP
    Biophys J; 2021 Dec; 120(23):5196-5206. PubMed ID: 34748763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2008 Nov; 47(46):12006-17. PubMed ID: 18947187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restricting the conformational freedom of the neuronal nitric-oxide synthase flavoprotein domain reveals impact on electron transfer and catalysis.
    Dai Y; Haque MM; Stuehr DJ
    J Biol Chem; 2017 Apr; 292(16):6753-6764. PubMed ID: 28232486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy landscapes and catalysis in nitric-oxide synthase.
    Sobolewska-Stawiarz A; Leferink NGH; Fisher K; Heyes DJ; Hay S; Rigby SEJ; Scrutton NS
    J Biol Chem; 2014 Apr; 289(17):11725-11738. PubMed ID: 24610812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular architecture of mammalian nitric oxide synthases.
    Campbell MG; Smith BC; Potter CS; Carragher B; Marletta MA
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3614-23. PubMed ID: 25125509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin-induced Conformational Control and Allostery Underlying Neuronal Nitric Oxide Synthase Activation.
    Hanson QM; Carley JR; Gilbreath TJ; Smith BC; Underbakke ES
    J Mol Biol; 2018 Mar; 430(7):935-947. PubMed ID: 29458127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2007 Jul; 46(28):8288-300. PubMed ID: 17580957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of calmodulin (CaM) bound to nitric oxide synthase peptides: effects of a phosphomimetic CaM mutation.
    Piazza M; Futrega K; Spratt DE; Dieckmann T; Guillemette JG
    Biochemistry; 2012 May; 51(17):3651-61. PubMed ID: 22486744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain.
    Yokom AL; Morishima Y; Lau M; Su M; Glukhova A; Osawa Y; Southworth DR
    J Biol Chem; 2014 Jun; 289(24):16855-65. PubMed ID: 24737326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes.
    Wu G; Berka V; Tsai AL
    J Inorg Biochem; 2011 Sep; 105(9):1226-37. PubMed ID: 21763233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calmodulin activates neuronal nitric oxide synthase by enabling transitions between conformational states.
    Salerno JC; Ray K; Poulos T; Li H; Ghosh DK
    FEBS Lett; 2013 Jan; 587(1):44-7. PubMed ID: 23159936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism.
    Tejero J; Haque MM; Durra D; Stuehr DJ
    J Biol Chem; 2010 Aug; 285(34):25941-9. PubMed ID: 20529840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraprotein electron transfer in a two-domain construct of neuronal nitric oxide synthase: the output state in nitric oxide formation.
    Feng C; Tollin G; Holliday MA; Thomas C; Salerno JC; Enemark JH; Ghosh DK
    Biochemistry; 2006 May; 45(20):6354-62. PubMed ID: 16700546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins.
    Ilagan RP; Tiso M; Konas DW; Hemann C; Durra D; Hille R; Stuehr DJ
    J Biol Chem; 2008 Jul; 283(28):19603-15. PubMed ID: 18487202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain.
    Welland A; Daff S
    FEBS J; 2010 Sep; 277(18):3833-43. PubMed ID: 20718865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic model linking protein conformational motions, interflavin electron transfer and electron flux through a dual-flavin enzyme-simulating the reductase activity of the endothelial and neuronal nitric oxide synthase flavoprotein domains.
    Haque MM; Kenney C; Tejero J; Stuehr DJ
    FEBS J; 2011 Nov; 278(21):4055-69. PubMed ID: 21848659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the free energy landscape for catalysis in mammalian nitric oxide synthases.
    Leferink NG; Hay S; Rigby SE; Scrutton NS
    FEBS J; 2015 Aug; 282(16):3016-29. PubMed ID: 25491181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Molecule FRET States, Conformational Interchange, and Conformational Selection by Dye Labels in Calmodulin.
    DeVore MS; Braimah A; Benson DR; Johnson CK
    J Phys Chem B; 2016 May; 120(19):4357-64. PubMed ID: 27111039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells.
    Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE
    Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.