BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 26311873)

  • 21. Differential targeting of nuclear pore complex proteins in poliovirus-infected cells.
    Park N; Katikaneni P; Skern T; Gustin KE
    J Virol; 2008 Feb; 82(4):1647-55. PubMed ID: 18045934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells.
    Walker EJ; Younessi P; Fulcher AJ; McCuaig R; Thomas BJ; Bardin PG; Jans DA; Ghildyal R
    PLoS One; 2013; 8(8):e71316. PubMed ID: 23951130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel recognition sequence of coxsackievirus 2A proteinase.
    Muto S; Miyoshi H; Nishikawa H; Nakashima H
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1436-42. PubMed ID: 16930558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex.
    Boehmer T; Enninga J; Dales S; Blobel G; Zhong H
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):981-5. PubMed ID: 12552102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of nucleocytoplasmic transport through the nuclear pore complex.
    Tetenbaum-Novatt J; Rout MP
    Cold Spring Harb Symp Quant Biol; 2010; 75():567-84. PubMed ID: 21447814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Nup98 in nuclear entry of human immunodeficiency virus type 1 cDNA.
    Ebina H; Aoki J; Hatta S; Yoshida T; Koyanagi Y
    Microbes Infect; 2004 Jul; 6(8):715-24. PubMed ID: 15207818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protease 2A induces stress granule formation during coxsackievirus B3 and enterovirus 71 infections.
    Wu S; Wang Y; Lin L; Si X; Wang T; Zhong X; Tong L; Luan Y; Chen Y; Li X; Zhang F; Zhao W; Zhong Z
    Virol J; 2014 Nov; 11():192. PubMed ID: 25410318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex.
    Peyro M; Soheilypour M; Lee BL; Mofrad MR
    Sci Rep; 2015 Nov; 5():15795. PubMed ID: 26541386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The selective permeability barrier in the nuclear pore complex.
    Li C; Goryaynov A; Yang W
    Nucleus; 2016 Sep; 7(5):430-446. PubMed ID: 27673359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex.
    Onischenko E; Tang JH; Andersen KR; Knockenhauer KE; Vallotton P; Derrer CP; Kralt A; Mugler CF; Chan LY; Schwartz TU; Weis K
    Cell; 2017 Nov; 171(4):904-917.e19. PubMed ID: 29033133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Cohesiveness in the Permeability of the Spatial Assemblies of FG Nucleoporins.
    Gu C; Vovk A; Zheng T; Coalson RD; Zilman A
    Biophys J; 2019 Apr; 116(7):1204-1215. PubMed ID: 30902367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural organization of the nuclear pore permeability barrier.
    Liashkovich I; Meyring A; Oberleithner H; Shahin V
    J Control Release; 2012 Jun; 160(3):601-8. PubMed ID: 22386519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency, selectivity, and robustness of nucleocytoplasmic transport.
    Zilman A; Di Talia S; Chait BT; Rout MP; Magnasco MO
    PLoS Comput Biol; 2007 Jul; 3(7):e125. PubMed ID: 17630825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98.
    Addetia A; Lieberman NAP; Phung Q; Hsiang TY; Xie H; Roychoudhury P; Shrestha L; Loprieno MA; Huang ML; Gale M; Jerome KR; Greninger AL
    mBio; 2021 Apr; 12(2):. PubMed ID: 33849972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration.
    Di Nunzio F; Danckaert A; Fricke T; Perez P; Fernandez J; Perret E; Roux P; Shorte S; Charneau P; Diaz-Griffero F; Arhel NJ
    PLoS One; 2012; 7(9):e46037. PubMed ID: 23049930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry.
    Laurell E; Beck K; Krupina K; Theerthagiri G; Bodenmiller B; Horvath P; Aebersold R; Antonin W; Kutay U
    Cell; 2011 Feb; 144(4):539-50. PubMed ID: 21335236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A checkpoint function for Nup98 in nuclear pore formation suggested by novel inhibitory nanobodies.
    Solà Colom M; Fu Z; Gunkel P; Güttler T; Trakhanov S; Srinivasan V; Gregor K; Pleiner T; Görlich D
    EMBO J; 2024 Jun; 43(11):2198-2232. PubMed ID: 38649536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A coarse-grained computational model of the nuclear pore complex predicts Phe-Gly nucleoporin dynamics.
    Pulupa J; Rachh M; Tomasini MD; Mincer JS; Simon SM
    J Gen Physiol; 2017 Oct; 149(10):951-966. PubMed ID: 28887410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex.
    Patel SS; Belmont BJ; Sante JM; Rexach MF
    Cell; 2007 Apr; 129(1):83-96. PubMed ID: 17418788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies.
    Davis LK; Ford IJ; Hoogenboom BW
    Elife; 2022 Jan; 11():. PubMed ID: 35098921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.