BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 26311873)

  • 41. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.
    Krull S; Thyberg J; Björkroth B; Rackwitz HR; Cordes VC
    Mol Biol Cell; 2004 Sep; 15(9):4261-77. PubMed ID: 15229283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The SUMO-specific isopeptidase SENP2 associates dynamically with nuclear pore complexes through interactions with karyopherins and the Nup107-160 nucleoporin subcomplex.
    Goeres J; Chan PK; Mukhopadhyay D; Zhang H; Raught B; Matunis MJ
    Mol Biol Cell; 2011 Dec; 22(24):4868-82. PubMed ID: 22031293
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intermolecular disulfide bonds between nucleoporins regulate karyopherin-dependent nuclear transport.
    Yoshimura SH; Otsuka S; Kumeta M; Taga M; Takeyasu K
    J Cell Sci; 2013 Jul; 126(Pt 14):3141-50. PubMed ID: 23641069
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex.
    Radu A; Moore MS; Blobel G
    Cell; 1995 Apr; 81(2):215-22. PubMed ID: 7736573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simple thermodynamic description of phase separation of Nup98 FG domains.
    Ng SC; Görlich D
    Nat Commun; 2022 Oct; 13(1):6172. PubMed ID: 36257947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export.
    Vasu S; Shah S; Orjalo A; Park M; Fischer WH; Forbes DJ
    J Cell Biol; 2001 Oct; 155(3):339-54. PubMed ID: 11684705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex.
    Peleg O; Lim RY
    Biol Chem; 2010 Jul; 391(7):719-30. PubMed ID: 20482319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex.
    Fragasso A; de Vries HW; Andersson J; van der Sluis EO; van der Giessen E; Dahlin A; Onck PR; Dekker C
    Nat Commun; 2021 Mar; 12(1):2010. PubMed ID: 33790297
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SARS-CoV-2 Orf6 is positioned in the nuclear pore complex by Rae1 to inhibit nucleocytoplasmic transport.
    Makio T; Zhang K; Love N; Mast FD; Liu X; Elaish M; Hobman T; Aitchison JD; Fontoura BMA; Wozniak RW
    Mol Biol Cell; 2024 May; 35(5):ar62. PubMed ID: 38507240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A single amino acid change in protein synthesis initiation factor 4G renders cap-dependent translation resistant to picornaviral 2A proteases.
    Lamphear BJ; Rhoads RE
    Biochemistry; 1996 Dec; 35(49):15726-33. PubMed ID: 8961935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores.
    Belov GA; Lidsky PV; Mikitas OV; Egger D; Lukyanov KA; Bienz K; Agol VI
    J Virol; 2004 Sep; 78(18):10166-77. PubMed ID: 15331749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nuclear import of adenovirus DNA involves direct interaction of hexon with an N-terminal domain of the nucleoporin Nup214.
    Cassany A; Ragues J; Guan T; Bégu D; Wodrich H; Kann M; Nemerow GR; Gerace L
    J Virol; 2015 Feb; 89(3):1719-30. PubMed ID: 25410864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling.
    Miorin L; Kehrer T; Sanchez-Aparicio MT; Zhang K; Cohen P; Patel RS; Cupic A; Makio T; Mei M; Moreno E; Danziger O; White KM; Rathnasinghe R; Uccellini M; Gao S; Aydillo T; Mena I; Yin X; Martin-Sancho L; Krogan NJ; Chanda SK; Schotsaert M; Wozniak RW; Ren Y; Rosenberg BR; Fontoura BMA; García-Sastre A
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28344-28354. PubMed ID: 33097660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Floppy but not sloppy: Interaction mechanism of FG-nucleoporins and nuclear transport receptors.
    Aramburu IV; Lemke EA
    Semin Cell Dev Biol; 2017 Aug; 68():34-41. PubMed ID: 28669824
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deciphering networks of protein interactions at the nuclear pore complex.
    Allen NP; Patel SS; Huang L; Chalkley RJ; Burlingame A; Lutzmann M; Hurt EC; Rexach M
    Mol Cell Proteomics; 2002 Dec; 1(12):930-46. PubMed ID: 12543930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation.
    Weng KF; Li ML; Hung CT; Shih SR
    PLoS Pathog; 2009 Sep; 5(9):e1000593. PubMed ID: 19779565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains.
    Fiserova J; Spink M; Richards SA; Saunter C; Goldberg MW
    J Cell Sci; 2014 Jan; 127(Pt 1):124-36. PubMed ID: 24144701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nup153 Recruits the Nup107-160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly.
    Vollmer B; Lorenz M; Moreno-Andrés D; Bodenhöfer M; De Magistris P; Astrinidis SA; Schooley A; Flötenmeyer M; Leptihn S; Antonin W
    Dev Cell; 2015 Jun; 33(6):717-28. PubMed ID: 26051542
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural dynamics of the nuclear pore complex.
    Sakiyama Y; Panatala R; Lim RYH
    Semin Cell Dev Biol; 2017 Aug; 68():27-33. PubMed ID: 28579449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conserved spatial organization of FG domains in the nuclear pore complex.
    Atkinson CE; Mattheyses AL; Kampmann M; Simon SM
    Biophys J; 2013 Jan; 104(1):37-50. PubMed ID: 23332057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.