These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26312149)

  • 1. Tipping the balance from angiogenesis to fibrosis in CKD.
    Ballermann BJ; Obeidat M
    Kidney Int Suppl (2011); 2014 Nov; 4(1):45-52. PubMed ID: 26312149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression.
    Kida Y
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease.
    Kang DH; Anderson S; Kim YG; Mazzalli M; Suga S; Jefferson JA; Gordon KL; Oyama TT; Hughes J; Hugo C; Kerjaschki D; Schreiner GF; Johnson RJ
    Am J Kidney Dis; 2001 Mar; 37(3):601-11. PubMed ID: 11228186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease.
    Kida Y; Tchao BN; Yamaguchi I
    Pediatr Nephrol; 2014 Mar; 29(3):333-42. PubMed ID: 23475077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia and fibrosis in chronic kidney disease: crossing at pericytes.
    Kawakami T; Mimura I; Shoji K; Tanaka T; Nangaku M
    Kidney Int Suppl (2011); 2014 Nov; 4(1):107-112. PubMed ID: 25401039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression.
    Venkatachalam MA; Weinberg JM; Kriz W; Bidani AK
    J Am Soc Nephrol; 2015 Aug; 26(8):1765-76. PubMed ID: 25810494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia and Dysregulated Angiogenesis in Kidney Disease.
    Tanaka S; Tanaka T; Nangaku M
    Kidney Dis (Basel); 2015 May; 1(1):80-9. PubMed ID: 27536668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gli1
    Kramann R; Wongboonsin J; Chang-Panesso M; Machado FG; Humphreys BD
    J Am Soc Nephrol; 2017 Mar; 28(3):776-784. PubMed ID: 27624490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary rarefaction from the kidney point of view.
    Afsar B; Afsar RE; Dagel T; Kaya E; Erus S; Ortiz A; Covic A; Kanbay M
    Clin Kidney J; 2018 Jun; 11(3):295-301. PubMed ID: 29988260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation.
    Kida Y; Zullo JA; Goligorsky MS
    Biochem Biophys Res Commun; 2016 Sep; 478(3):1074-9. PubMed ID: 27524235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic link between renal ischemia and fibrosis.
    Tanaka T
    Med Mol Morphol; 2017 Mar; 50(1):1-8. PubMed ID: 27438710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal tubular angiogenic dysregulation in anti-Thy1.1 glomerulonephritis.
    Cina DP; Xu H; Liu L; Farkas L; Farkas D; Kolb M; Margetts PJ
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F488-98. PubMed ID: 21048020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis.
    Liu S; Soong Y; Seshan SV; Szeto HH
    Am J Physiol Renal Physiol; 2014 May; 306(9):F970-80. PubMed ID: 24553434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Losartan protects against intermittent hypoxia-induced peritubular capillary loss by modulating the renal renin-angiotensin system and angiogenesis factors.
    Wu J; Chu Y; Jiang Z; Yu Q
    Acta Biochim Biophys Sin (Shanghai); 2020 Jan; 52(1):38-48. PubMed ID: 31836883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of genetics and epigenetics to progression of kidney fibrosis.
    Tampe B; Zeisberg M
    Nephrol Dial Transplant; 2014 Sep; 29 Suppl 4():iv72-9. PubMed ID: 23975750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tubular atrophy in the pathogenesis of chronic kidney disease progression.
    Schelling JR
    Pediatr Nephrol; 2016 May; 31(5):693-706. PubMed ID: 26208584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of glomerulotubular balance in the setting of heterogeneous glomerular injury. Preservation of a close functional linkage between individual nephrons and surrounding microvasculature.
    Ichikawa I; Hoyer JR; Seiler MW; Brenner BM
    J Clin Invest; 1982 Jan; 69(1):185-98. PubMed ID: 7054238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury.
    Collett JA; Traktuev DO; Mehrotra P; Crone A; Merfeld-Clauss S; March KL; Basile DP
    J Cell Mol Med; 2017 Jul; 21(7):1420-1430. PubMed ID: 28455887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia as a key player in the AKI-to-CKD transition.
    Tanaka S; Tanaka T; Nangaku M
    Am J Physiol Renal Physiol; 2014 Dec; 307(11):F1187-95. PubMed ID: 25350978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease.
    Mayer G
    Nephrol Dial Transplant; 2011 Apr; 26(4):1132-7. PubMed ID: 21330358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.