BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26312826)

  • 1. A germline chromothripsis event stably segregating in 11 individuals through three generations.
    Bertelsen B; Nazaryan-Petersen L; Sun W; Mehrjouy MM; Xie G; Chen W; Hjermind LE; Taschner PE; Tümer Z
    Genet Med; 2016 May; 18(5):494-500. PubMed ID: 26312826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring.
    de Pagter MS; van Roosmalen MJ; Baas AF; Renkens I; Duran KJ; van Binsbergen E; Tavakoli-Yaraki M; Hochstenbach R; van der Veken LT; Cuppen E; Kloosterman WP
    Am J Hum Genet; 2015 Apr; 96(4):651-6. PubMed ID: 25799107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis.
    Boeva V; Jouannet S; Daveau R; Combaret V; Pierre-Eugène C; Cazes A; Louis-Brennetot C; Schleiermacher G; Ferrand S; Pierron G; Lermine A; Rio Frio T; Raynal V; Vassal G; Barillot E; Delattre O; Janoueix-Lerosey I
    PLoS One; 2013; 8(8):e72182. PubMed ID: 23991058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insertional translocation involving an additional nonchromothriptic chromosome in constitutional chromothripsis: Rule or exception?
    Kurtas NE; Xumerle L; Giussani U; Pansa A; Cardarelli L; Bertini V; Valetto A; Liehr T; Clara Bonaglia M; Errichiello E; Delledonne M; Zuffardi O
    Mol Genet Genomic Med; 2019 Feb; 7(2):e00496. PubMed ID: 30565424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders.
    Zepeda-Mendoza CJ; Morton CC
    Am J Hum Genet; 2019 Apr; 104(4):565-577. PubMed ID: 30951674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes.
    Gribble SM; Prigmore E; Burford DC; Porter KM; Ng BL; Douglas EJ; Fiegler H; Carr P; Kalaitzopoulos D; Clegg S; Sandstrom R; Temple IK; Youings SA; Thomas NS; Dennis NR; Jacobs PA; Crolla JA; Carter NP
    J Med Genet; 2005 Jan; 42(1):8-16. PubMed ID: 15635069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing.
    Aristidou C; Koufaris C; Theodosiou A; Bak M; Mehrjouy MM; Behjati F; Tanteles G; Christophidou-Anastasiadou V; Tommerup N; Sismani C
    PLoS One; 2017; 12(1):e0169935. PubMed ID: 28072833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration.
    Chiang C; Jacobsen JC; Ernst C; Hanscom C; Heilbut A; Blumenthal I; Mills RE; Kirby A; Lindgren AM; Rudiger SR; McLaughlan CJ; Bawden CS; Reid SJ; Faull RL; Snell RG; Hall IM; Shen Y; Ohsumi TK; Borowsky ML; Daly MJ; Lee C; Morton CC; MacDonald ME; Gusella JF; Talkowski ME
    Nat Genet; 2012 Mar; 44(4):390-7, S1. PubMed ID: 22388000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical application of whole-genome low-coverage next-generation sequencing to detect and characterize balanced chromosomal translocations.
    Liang D; Wang Y; Ji X; Hu H; Zhang J; Meng L; Lin Y; Ma D; Jiang T; Jiang H; Asan ; Song L; Guo J; Hu P; Xu Z
    Clin Genet; 2017 Apr; 91(4):605-610. PubMed ID: 27491356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination.
    Nazaryan-Petersen L; Bertelsen B; Bak M; Jønson L; Tommerup N; Hancks DC; Tümer Z
    Hum Mutat; 2016 Apr; 37(4):385-95. PubMed ID: 26929209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cytogenetic-molecular analysis of balanced chromosomal rearrangements in nine patients with intellectual disability, dysmorphic features and congenital abnormalities].
    Borg K; Bocian E; Stankiewicz P; Obersztyn E; Kruczek A; Nowakowska B; Ilnicka A; Mazurczak T
    Med Wieku Rozwoj; 2006; 10(1 Pt 2):227-46. PubMed ID: 17028391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis.
    Ratnaparkhe M; Hlevnjak M; Kolb T; Jauch A; Maass KK; Devens F; Rode A; Hovestadt V; Korshunov A; Pastorczak A; Mlynarski W; Sungalee S; Korbel J; Hoell J; Fischer U; Milde T; Kramm C; Nathrath M; Chrzanowska K; Tausch E; Takagi M; Taga T; Constantini S; Loeffen J; Meijerink J; Zielen S; Gohring G; Schlegelberger B; Maass E; Siebert R; Kunz J; Kulozik AE; Worst B; Jones DT; Pfister SM; Zapatka M; Lichter P; Ernst A
    Leukemia; 2017 Oct; 31(10):2048-2056. PubMed ID: 28196983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline.
    Kloosterman WP; Guryev V; van Roosmalen M; Duran KJ; de Bruijn E; Bakker SC; Letteboer T; van Nesselrooij B; Hochstenbach R; Poot M; Cuppen E
    Hum Mol Genet; 2011 May; 20(10):1916-24. PubMed ID: 21349919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interchromosomal effect in carriers of translocations and inversions assessed by preimplantation genetic testing for structural rearrangements (PGT-SR).
    Mateu-Brull E; Rodrigo L; Peinado V; Mercader A; Campos-Galindo I; Bronet F; García-Herrero S; Florensa M; Milán M; Rubio C
    J Assist Reprod Genet; 2019 Dec; 36(12):2547-2555. PubMed ID: 31696386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements: data from United States and Canadian laboratories.
    Daniel A; Hook EB; Wulf G
    Am J Med Genet; 1989 May; 33(1):14-53. PubMed ID: 2750783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Very short DNA segments can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly.
    Slamova Z; Nazaryan-Petersen L; Mehrjouy MM; Drabova J; Hancarova M; Marikova T; Novotna D; Vlckova M; Vlckova Z; Bak M; Zemanova Z; Tommerup N; Sedlacek Z
    Hum Mutat; 2018 May; 39(5):709-716. PubMed ID: 29405539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review.
    Pellestor F; Gatinois V; Puechberty J; Geneviève D; Lefort G
    Fertil Steril; 2014 Dec; 102(6):1785-96. PubMed ID: 25439810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical impact of chromothriptic complex chromosomal rearrangements in newly diagnosed multiple myeloma.
    Kaur G; Gupta R; Mathur N; Rani L; Kumar L; Sharma A; Singh V; Gupta A; Sharma OD
    Leuk Res; 2019 Jan; 76():58-64. PubMed ID: 30576858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells.
    Middelkamp S; van Heesch S; Braat AK; de Ligt J; van Iterson M; Simonis M; van Roosmalen MJ; Kelder MJ; Kruisselbrink E; Hochstenbach R; Verbeek NE; Ippel EF; Adolfs Y; Pasterkamp RJ; Kloosterman WP; Kuijk EW; Cuppen E
    Genome Med; 2017 Jan; 9(1):9. PubMed ID: 28126037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2.
    Nazaryan L; Stefanou EG; Hansen C; Kosyakova N; Bak M; Sharkey FH; Mantziou T; Papanastasiou AD; Velissariou V; Liehr T; Syrrou M; Tommerup N
    Eur J Hum Genet; 2014 Mar; 22(3):338-43. PubMed ID: 23860044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.