These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26312954)

  • 1. The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories.
    Souchier E; D'Acapito F; Noé P; Blaise P; Bernard M; Jousseaume V
    Phys Chem Chem Phys; 2015 Oct; 17(37):23931-7. PubMed ID: 26312954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedded nanoparticle dynamics and their influence on switching behaviour of resistive memory devices.
    Tappertzhofen S; Hofmann S
    Nanoscale; 2017 Nov; 9(44):17494-17504. PubMed ID: 29109988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive-bridging random access memory: challenges and opportunity for 3D architecture.
    Jana D; Roy S; Panja R; Dutta M; Rahaman SZ; Mahapatra R; Maikap S
    Nanoscale Res Lett; 2015; 10():188. PubMed ID: 25977660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon compatible Sn-based resistive switching memory.
    Sonde S; Chakrabarti B; Liu Y; Sasikumar K; Lin J; Stan L; Divan R; Ocola LE; Rosenmann D; Choudhury P; Ni K; Sankaranarayanan SKRS; Datta S; Guha S
    Nanoscale; 2018 May; 10(20):9441-9449. PubMed ID: 29663006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster-Type Filaments Induced by Doping in Low-Operation-Current Conductive Bridge Random Access Memory.
    Sun Y; Song C; Yin S; Qiao L; Wan Q; Liu J; Wang R; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29481-29486. PubMed ID: 32490665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-Forming and Electro-Breaking of Nanoscale Ag Filaments for Conductive-Bridging Random-Access Memory Cell using Ag-Doped Polymer-Electrolyte between Pt Electrodes.
    Song MJ; Kwon KH; Park JG
    Sci Rep; 2017 Jun; 7(1):3065. PubMed ID: 28596546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and rupture of Ag conductive bridge in ZrO2-based resistive switching memory.
    Lin CC; Chang YP
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2437-41. PubMed ID: 22755070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of in Situ Silver Migration in Amorphous Boron Nitride CBRAM Device.
    Jeon YR; Abbas Y; Sokolov AS; Kim S; Ku B; Choi C
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23329-23336. PubMed ID: 31252457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching.
    Sun Y; Song C; Yin J; Chen X; Wan Q; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34064-34070. PubMed ID: 28901743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive switching in single epitaxial ZnO nanoislands.
    Qi J; Olmedo M; Ren J; Zhan N; Zhao J; Zheng JG; Liu J
    ACS Nano; 2012 Feb; 6(2):1051-8. PubMed ID: 22257020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory.
    Qin S; Liu Z; Zhang G; Zhang J; Sun Y; Wu H; Qian H; Yu Z
    Phys Chem Chem Phys; 2015 Apr; 17(14):8627-32. PubMed ID: 25750983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design on Controllable Cation Injection with Improved Conductive-Bridge Random Access Memory by Glancing Angle Deposition Technology toward Neuromorphic Application.
    Shih YC; Shen YC; Cheng YK; Chaudhary M; Yang TY; Yu YJ; Chueh YL
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55470-55480. PubMed ID: 34775743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible conductive-bridging random-access-memory cell vertically stacked with top Ag electrode, PEO, PVK, and bottom Pt electrode.
    Seung HM; Kwon KC; Lee GS; Park JG
    Nanotechnology; 2014 Oct; 25(43):435204. PubMed ID: 25297517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dysprosium and lutetium metal buffer layers on the resistive switching characteristics of Cu-Sn alloy-based conductive-bridge random access memory.
    Vishwanath SK; Woo H; Jeon S
    Nanotechnology; 2018 Sep; 29(38):385207. PubMed ID: 29911987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO
    Yuan F; Zhang Z; Liu C; Zhou F; Yau HM; Lu W; Qiu X; Wong HP; Dai J; Chai Y
    ACS Nano; 2017 Apr; 11(4):4097-4104. PubMed ID: 28319363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial Study of Ag-Te Thin Films and Their Application as Cation Supply Layer in CBRAM Cells.
    Devulder W; Opsomer K; Meersschaut J; Deduytsche D; Jurczak M; Goux L; Detavernier C
    ACS Comb Sci; 2015 May; 17(5):334-40. PubMed ID: 25860668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bond nature of active metal ions in SiO2-based electrochemical metallization memory cells.
    Cho DY; Tappertzhofen S; Waser R; Valov I
    Nanoscale; 2013 Mar; 5(5):1781-4. PubMed ID: 23354222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ag filament induced nonvolatile resistive switching memory behaviour in hexagonal MoSe
    Han P; Sun B; Li J; Li T; Shi Q; Jiao B; Wu Q; Zhang X
    J Colloid Interface Sci; 2017 Nov; 505():148-153. PubMed ID: 28577464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications.
    Abbas H; Li J; Ang DS
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.