These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26313123)

  • 1. Flexible receptor docking for drug discovery.
    Wong CF
    Expert Opin Drug Discov; 2015; 10(11):1189-200. PubMed ID: 26313123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexi-pharma: a molecule-ranking strategy for virtual screening using pharmacophores from ligand-free conformational ensembles.
    Lans I; Palacio-Rodríguez K; Cavasotto CN; Cossio P
    J Comput Aided Mol Des; 2020 Oct; 34(10):1063-1077. PubMed ID: 32656619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using machine learning to improve ensemble docking for drug discovery.
    Chandak T; Mayginnes JP; Mayes H; Wong CF
    Proteins; 2020 Oct; 88(10):1263-1270. PubMed ID: 32401384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the challenges of protein flexibility in drug design.
    Antunes DA; Devaurs D; Kavraki LE
    Expert Opin Drug Discov; 2015 Dec; 10(12):1301-13. PubMed ID: 26414598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking.
    Bolstad ES; Anderson AC
    Proteins; 2009 Apr; 75(1):62-74. PubMed ID: 18781587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2018 Jan; 32(1):187-198. PubMed ID: 28887659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs.
    Tarcsay A; Paragi G; Vass M; Jójárt B; Bogár F; Keserű GM
    J Chem Inf Model; 2013 Nov; 53(11):2990-9. PubMed ID: 24116387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated docking for novel drug discovery.
    Bello M; Martínez-Archundia M; Correa-Basurto J
    Expert Opin Drug Discov; 2013 Jul; 8(7):821-34. PubMed ID: 23642085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols.
    Osguthorpe DJ; Sherman W; Hagler AT
    J Phys Chem B; 2012 Jun; 116(23):6952-9. PubMed ID: 22424156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.
    Tian S; Sun H; Pan P; Li D; Zhen X; Li Y; Hou T
    J Chem Inf Model; 2014 Oct; 54(10):2664-79. PubMed ID: 25233367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A selective method for optimizing ensemble docking-based experiments on an InhA Fully-Flexible receptor model.
    De Paris R; Vahl Quevedo C; Ruiz DD; Gargano F; de Souza ON
    BMC Bioinformatics; 2018 Jun; 19(1):235. PubMed ID: 29929475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.
    Strecker C; Meyer B
    J Chem Inf Model; 2018 May; 58(5):1121-1131. PubMed ID: 29683661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The latest automated docking technologies for novel drug discovery.
    Caballero J
    Expert Opin Drug Discov; 2021 Jun; 16(6):625-645. PubMed ID: 33353444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing experimental data for reducing ensemble size in flexible-protein docking.
    Xu M; Lill MA
    J Chem Inf Model; 2012 Jan; 52(1):187-98. PubMed ID: 22146074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery.
    Chen IJ; Foloppe N
    Bioorg Med Chem; 2013 Dec; 21(24):7898-920. PubMed ID: 24184215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations.
    Dixit A; Verkhivker GM
    J Chem Inf Model; 2012 Oct; 52(10):2501-15. PubMed ID: 22992037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.