BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26313704)

  • 1. Confidence interval estimation for pooled-sample biomonitoring from a complex survey design.
    Caudill SP
    Environ Int; 2015 Dec; 85():40-5. PubMed ID: 26313704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of pooled samples from the National Health and Nutrition Examination Survey.
    Caudill SP
    Stat Med; 2012 Nov; 31(27):3269-77. PubMed ID: 22492247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating serum concentrations of dioxin-like compounds in the U.S. population effective 2005-2006 and 2007-2008: A multiple imputation and trending approach incorporating NHANES pooled sample data.
    Bichteler A; Wikoff DS; Loko F; Harris MA
    Environ Int; 2017 Aug; 105():112-125. PubMed ID: 28527750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing populations of individuals using pooled samples.
    Caudill SP
    J Expo Sci Environ Epidemiol; 2010 Jan; 20(1):29-37. PubMed ID: 19002216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population variation in biomonitoring data for persistent organic pollutants (POPs): an examination of multiple population-based datasets for application to Australian pooled biomonitoring data.
    Aylward LL; Green E; Porta M; Toms LM; Den Hond E; Schulz C; Gasull M; Pumarega J; Conrad A; Kolossa-Gehring M; Schoeters G; Mueller JF
    Environ Int; 2014 Jul; 68():127-38. PubMed ID: 24727067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Important issues related to using pooled samples for environmental chemical biomonitoring.
    Caudill SP
    Stat Med; 2011 Feb; 30(5):515-21. PubMed ID: 21312217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric mean estimation from pooled samples.
    Caudill SP; Turner WE; Patterson DG
    Chemosphere; 2007 Sep; 69(3):371-80. PubMed ID: 17618673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method for generating distributions of biomonitoring equivalents to support exposure assessment and prioritization.
    Phillips MB; Sobus JR; George BJ; Isaacs K; Conolly R; Tan YM
    Regul Toxicol Pharmacol; 2014 Aug; 69(3):434-42. PubMed ID: 24845241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of NHANES biomonitoring data for volatile organic chemicals in blood: application of chemical-specific screening criteria.
    Kirman CR; Aylward LL; Blount BC; Pyatt DW; Hays SM
    J Expo Sci Environ Epidemiol; 2012; 22(1):24-34. PubMed ID: 21989501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.
    Aylward LL; Kirman CR; Blount BC; Hays SM
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pooled biological specimens for human biomonitoring of environmental chemicals: opportunities and limitations.
    Heffernan AL; Aylward LL; Toms LM; Sly PD; Macleod M; Mueller JF
    J Expo Sci Environ Epidemiol; 2014; 24(3):225-32. PubMed ID: 24192659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical Bayes Gaussian likelihood estimation of exposure distributions from pooled samples in human biomonitoring.
    Li X; Kuk AY; Xu J
    Stat Med; 2014 Dec; 33(28):4999-5014. PubMed ID: 25213192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent organic pollutants and hyperuricemia in the U.S. general population.
    Lee YM; Bae SG; Lee SH; Jacobs DR; Lee DH
    Atherosclerosis; 2013 Sep; 230(1):1-5. PubMed ID: 23958244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. California biomonitoring data: Comparison to NHANES and interpretation in a risk assessment context.
    Aylward LL; Seiber JN; Hays SM
    Regul Toxicol Pharmacol; 2015 Dec; 73(3):875-84. PubMed ID: 26449396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of using pooled versus individual samples for designing environmental monitoring sampling strategies.
    Bignert A; Eriksson U; Nyberg E; Miller A; Danielsson S
    Chemosphere; 2014 Jan; 94():177-82. PubMed ID: 24144465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-specific reference ranges for polychlorinated biphenyls (PCB) based on the NHANES 2001-2002 survey.
    Nichols BR; Hentz KL; Aylward L; Hays SM; Lamb JC
    J Toxicol Environ Health A; 2007 Nov; 70(21):1873-7. PubMed ID: 17934961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in urinary spot sample, 24 h samples, and longer-term average urinary concentrations of short-lived environmental chemicals: implications for exposure assessment and reverse dosimetry.
    Aylward LL; Hays SM; Zidek A
    J Expo Sci Environ Epidemiol; 2017 Nov; 27(6):582-590. PubMed ID: 27703149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative effects of educational level and occupational social class on body concentrations of persistent organic pollutants in a representative sample of the general population of Catalonia, Spain.
    Gasull M; Pumarega J; Rovira G; López T; Alguacil J; Porta M
    Environ Int; 2013 Oct; 60():190-201. PubMed ID: 24064380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for analysis of marker persistent organic pollutants in low-volume plasma and serum samples using 96-well plate solid phase extraction.
    Stubleski J; Kukucka P; Salihovic S; Lind PM; Lind L; Kärrman A
    J Chromatogr A; 2018 Apr; 1546():18-27. PubMed ID: 29510870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. National Health and Nutrition Examination Survey, 2015-2018: Sample Design and Estimation Procedures.
    Chen TC; Clark J; Riddles MK; Mohadjer LK; Fakhouri THI
    Vital Health Stat 2; 2020 Apr; (184):1-35. PubMed ID: 33663649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.