These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26313739)

  • 1. Thermal transport in MoS2/Graphene hybrid nanosheets.
    Zhang Z; Xie Y; Peng Q; Chen Y
    Nanotechnology; 2015 Sep; 26(37):375402. PubMed ID: 26313739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-plane and cross-plane thermal conductivities of molybdenum disulfide.
    Ding Z; Jiang JW; Pei QX; Zhang YW
    Nanotechnology; 2015 Feb; 26(6):065703. PubMed ID: 25597653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twist angle-dependent conductivities across MoS
    Liao M; Wu ZW; Du L; Zhang T; Wei Z; Zhu J; Yu H; Tang J; Gu L; Xing Y; Yang R; Shi D; Yao Y; Zhang G
    Nat Commun; 2018 Oct; 9(1):4068. PubMed ID: 30287809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles calculations of thermal transport properties in MoS
    Ma JJ; Zheng JJ; Zhu XL; Liu PF; Li WD; Wang BT
    Phys Chem Chem Phys; 2019 May; 21(20):10442-10448. PubMed ID: 31066395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal Nonlinear Optical Imaging of MoS₂ and MoS₂-Based van der Waals Heterostructures.
    Li D; Xiong W; Jiang L; Xiao Z; Golgir HR; Wang M; Huang X; Zhou Y; Lin Z; Song J; Ducharme S; Jiang L; Silvain JF; Lu Y
    ACS Nano; 2016 Mar; 10(3):3766-75. PubMed ID: 26914313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of mechanisms of the adsorption of CO
    Enujekwu FM; Ezeh CI; George MW; Xu M; Do H; Zhang Y; Zhao H; Wu T
    Nanoscale Adv; 2019 Apr; 1(4):1442-1451. PubMed ID: 36132593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance.
    Liu X; Gao J; Zhang G; Zhang YW
    Nanoscale; 2018 Nov; 10(42):19854-19862. PubMed ID: 30335107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene.
    Ago H; Endo H; Solís-Fernández P; Takizawa R; Ohta Y; Fujita Y; Yamamoto K; Tsuji M
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5265-73. PubMed ID: 25695865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS
    Gong F; Ding Z; Fang Y; Tong CJ; Xia D; Lv Y; Wang B; Papavassiliou DV; Liao J; Wu M
    ACS Appl Mater Interfaces; 2018 May; 10(17):14614-14621. PubMed ID: 29638106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature and interlayer coupling induced thermal transport across graphene/2D-SiC van der Waals heterostructure.
    Islam MS; Mia I; Islam ASMJ; Stampfl C; Park J
    Sci Rep; 2022 Jan; 12(1):761. PubMed ID: 35031659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene.
    Mihnev MT; Tolsma JR; Divin CJ; Sun D; Asgari R; Polini M; Berger C; de Heer WA; MacDonald AH; Norris TB
    Nat Commun; 2015 Sep; 6():8105. PubMed ID: 26399955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A first principle study of the structural, electronic, and temperature-dependent thermodynamic properties of graphene/MoS
    Hossain MT; Rahman MA
    J Mol Model; 2020 Feb; 26(2):40. PubMed ID: 32008139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Thermal Transport across Layered Graphene-MoS
    Sood A; Sievers C; Shin YC; Chen V; Chen S; Smithe KKH; Chatterjee S; Donadio D; Goodson KE; Pop E
    ACS Nano; 2021 Dec; 15(12):19503-19512. PubMed ID: 34813267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure stability and high-temperature distortion resistance of trilayer complexes formed from graphenes and boron nitride nanosheets.
    Yuan J; Liew KM
    Phys Chem Chem Phys; 2014 Jan; 16(1):88-94. PubMed ID: 24220027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.