BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26314070)

  • 1. Phenotypic Variation and Sexual Size Dimorphism in Dichroplus elongatus (Orthoptera: Acrididae).
    Rosetti N; Remis MI
    Environ Entomol; 2015 Aug; 44(4):1240-9. PubMed ID: 26314070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Variation in Body Size and Wing Dimorphism Correlates With Environmental Conditions in the Grasshopper Dichroplus vittatus (Orthoptera: Acrididae).
    Rosetti N; Remis MI
    Environ Entomol; 2018 Jun; 47(3):519-526. PubMed ID: 29672724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latitudinal clines in the grasshopper Dichroplus elongatus: coevolution of the A genome and B chromosomes?
    Rosetti N; Remis MI
    J Evol Biol; 2013 Apr; 26(4):719-32. PubMed ID: 23517446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphometric differentiation in Cornops aquaticum (Orthoptera: Acrididae): associations with sex, chromosome, and geographic conditions.
    Romero ML; Colombo PC; Remis MI
    J Insect Sci; 2014; 14():164. PubMed ID: 25399431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological drivers of body size evolution and sexual size dimorphism in short-horned grasshoppers (Orthoptera: Acrididae).
    García-Navas V; Noguerales V; Cordero PJ; Ortego J
    J Evol Biol; 2017 Aug; 30(8):1592-1608. PubMed ID: 28609564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of B chromosomes and supernumerary segments on morphometric traits and adult fitness components in the grasshopper, Dichroplus elongatus (Acrididae).
    Rosetti N; Vilardi JC; Remis MI
    J Evol Biol; 2007 Jan; 20(1):249-59. PubMed ID: 17210018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local climate determines intra- and interspecific variation in sexual size dimorphism in mountain grasshopper communities.
    Laiolo P; Illera JC; Obeso JR
    J Evol Biol; 2013 Oct; 26(10):2171-83. PubMed ID: 23937477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body Size Adaptations to Altitudinal Climatic Variation in Neotropical Grasshoppers of the Genus Sphenarium (Orthoptera: Pyrgomorphidae).
    Sanabria-Urbán S; Song H; Oyama K; González-Rodríguez A; Serrano-Meneses MA; Cueva Del Castillo R
    PLoS One; 2015; 10(12):e0145248. PubMed ID: 26684616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological, genetic, and chromosomal variation at a small spatial scale within a mosaic hybrid zone of the grasshopper Dichroplus pratensis Bruner (Acrididae).
    Miño CI; Gardenal CN; Bidau CJ
    J Hered; 2011; 102(2):184-95. PubMed ID: 21172824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geographic variation of life-history traits in the sand lizard, Lacerta agilis: testing Darwin's fecundity-advantage hypothesis.
    Roitberg ES; Eplanova GV; Kotenko TI; Amat F; Carretero MA; Kuranova VN; Bulakhova NA; Zinenko OI; Yakovlev VA
    J Evol Biol; 2015 Mar; 28(3):613-29. PubMed ID: 25627276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A test of Allen's rule in ectotherms: the case of two south American Melanopline Grasshoppers (Orthoptera: Acrididae) with partially overlapping geographic ranges.
    Bidau CJ; Martí DA
    Neotrop Entomol; 2008; 37(4):370-80. PubMed ID: 18813738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of fecundity is associated with female body size but not female-biased sexual size dimorphism among frogs.
    Monroe MJ; South SH; Alonzo SH
    J Evol Biol; 2015 Oct; 28(10):1793-803. PubMed ID: 26189727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Postembryonic development, fecundity and food consumption of Dichroplus exilis (Orthoptera: Acrididae) under controlled conditions].
    Bardi C; Mariottini Y; De Wysiecki ML; Lange CE
    Rev Biol Trop; 2011 Dec; 59(4):1579-87. PubMed ID: 22208075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dichroplus vittatus (Orthoptera: Acrididae) follows the converse to Bergmann's rule although male morphological variability increases with latitude.
    Bidau CJ; Martí DA
    Bull Entomol Res; 2007 Feb; 97(1):69-79. PubMed ID: 17298684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs.
    Nali RC; Zamudio KR; Haddad CF; Prado CP
    Am Nat; 2014 Dec; 184(6):727-40. PubMed ID: 25438173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rensch's rule inverted--female-driven gigantism in nine-spined stickleback Pungitius pungitius.
    Herczeg G; Gonda A; Merilä J
    J Anim Ecol; 2010 May; 79(3):581-8. PubMed ID: 20202005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch's rule in Andrew's toad (Bufo andrewsi).
    Liao WB; Liu WC; Merilä J
    Oecologia; 2015 Feb; 177(2):389-99. PubMed ID: 25407623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of weather variables and plant communities on grasshopper density in the Southern Pampas, Argentina.
    de Wysiecki ML; Arturi M; Torrusio S; Cigliano MM
    J Insect Sci; 2011; 11():109. PubMed ID: 22220572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body Size, Fecundity, and Sexual Size Dimorphism in the Neotropical Cricket Macroanaxipha macilenta (Saussure) (Orthoptera: Gryllidae).
    Cueva Del Castillo R
    Neotrop Entomol; 2015 Apr; 44(2):116-22. PubMed ID: 26013128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex-specific selection and intraspecific variation in sexual size dimorphism.
    Cox RM; Calsbeek R
    Evolution; 2010 Mar; 64(3):798-809. PubMed ID: 19796147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.