These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26314112)

  • 1. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].
    Chen YN; Yuan L
    Huan Jing Ke Xue; 2015 May; 36(5):1655-61. PubMed ID: 26314112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Acute Toxicity of Coptis chinensis Rhizome Extracts to Daphnia carinata].
    Chen YN; Yuan L
    Huan Jing Ke Xue; 2015 Oct; 36(10):3892-5. PubMed ID: 26841628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells.
    Friedemann T; Otto B; Klätschke K; Schumacher U; Tao Y; Leung AK; Efferth T; Schröder S
    J Ethnopharmacol; 2014 Aug; 155(1):607-15. PubMed ID: 24929105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coptis chinensis Franch. extract up-regulate type I helper T-cell cytokine through MAPK activation in MOLT-4 T cell.
    Kim E; Ahn S; Rhee HI; Lee DC
    J Ethnopharmacol; 2016 Aug; 189():126-31. PubMed ID: 27224239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute and chronic toxic effects of chloramphenicol on Scenedesmus obliquus and Chlorella pyrenoidosa.
    Zhang W; Sun W; An S; Xiong B; Lin K; Cui X; Guo M
    Water Environ Res; 2013 Aug; 85(8):725-32. PubMed ID: 24003598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Allelopathic effects of extracts from fibrous roots of Coptis chinensis on two leguminous species].
    Li Q; Wu YK; Yuan L; Huang JG
    Zhongguo Zhong Yao Za Zhi; 2013 Mar; 38(6):806-11. PubMed ID: 23717956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae.
    Gu S; Zheng H; Xu Q; Sun C; Shi M; Wang Z; Li F
    Aquat Toxicol; 2017 Oct; 191():122-130. PubMed ID: 28822891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute and chronic toxic effects of bisphenol A on Chlorella pyrenoidosa and Scenedesmus obliquus.
    Zhang W; Xiong B; Sun WF; An S; Lin KF; Guo MJ; Cui XH
    Environ Toxicol; 2014 Jun; 29(6):714-22. PubMed ID: 22887798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cellular response of freshwater green algae to the toxicity of tetracycline antibiotics].
    Xu DM; Wang YH; Rao GW
    Huan Jing Ke Xue; 2013 Sep; 34(9):3386-90. PubMed ID: 24288980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eco-toxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa.
    Zhang W; Zhang M; Lin K; Sun W; Xiong B; Guo M; Cui X; Fu R
    Environ Toxicol Pharmacol; 2012 Mar; 33(2):344-52. PubMed ID: 22301166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of contents of berberine in Coptis chinensis of Lichuan].
    Guo ZG; Lin Z; Sun RQ; Sun SQ; Wang LQ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2004 Dec; 26(6):618-21. PubMed ID: 15663219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ.
    Choi JS; Kim JH; Ali MY; Min BS; Kim GD; Jung HA
    Fitoterapia; 2014 Oct; 98():199-208. PubMed ID: 25128422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the novel nanoparticle material - CdSe quantum dots on Chlorella pyrenoidosa and Scenedesmus obliquus: Concentration-time-dependent responses.
    Yan K; Liu Y; Yang Q; Liu W; Guo R; Sui J; Yan Z; Chen J
    Ecotoxicol Environ Saf; 2019 Apr; 171():728-736. PubMed ID: 30658309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AChE inhibitory alkaloids from Coptis chinensis.
    Lin Y; Guo HC; Kuang Y; Shang ZP; Li B; Chen K; Xu LL; Qiao X; Liang H; Ye M
    Fitoterapia; 2020 Mar; 141():104464. PubMed ID: 31870946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of growing
    Wang Y; Mo YR; Tan J; Wu LX; Pan Y; Chen XD
    PeerJ; 2022; 10():e13676. PubMed ID: 35880218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective Effect of Coptis chinensis in MPP[Formula: see text] and MPTP-Induced Parkinson's Disease Models.
    Friedemann T; Ying Y; Wang W; Kramer ER; Schumacher U; Fei J; Schröder S
    Am J Chin Med; 2016; 44(5):907-25. PubMed ID: 27430912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cultural regionalization for Coptis chinensis based on 3S technology platform Ⅰ. Study on growth suitability for Coptis chinensis based on ecological factors analysis by Maxent and ArcGIS model].
    Liu X; Yang YF; Song HP; Zhang XB; Huang LQ; Wu HZ
    Zhongguo Zhong Yao Za Zhi; 2016 Sep; 41(17):3186-3193. PubMed ID: 28920369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the autointoxication of aquatic extracts from different parts of Coptis chinensis].
    Yin FJ; Qu XY; Zeng W; Shu S
    Zhong Yao Cai; 2009 Mar; 32(3):329-30. PubMed ID: 19565705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology.
    Guo R; Xie W; Chen J
    Food Chem Toxicol; 2015 Apr; 78():116-21. PubMed ID: 25684417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quality assessment for Coptis chinensis planted with ecological techniques].
    Wang LQ; Ye XC; Deng F; Zhang LP; Xiao HX
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2004 Dec; 26(6):608-10. PubMed ID: 15663216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.