BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 26314114)

  • 1. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].
    Ling X; Hu CY; Cheng M; Gu J
    Huan Jing Ke Xue; 2015 May; 36(5):1668-73. PubMed ID: 26314114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water.
    Ding S; Chu W; Krasner SW; Yu Y; Fang C; Xu B; Gao N
    Water Res; 2018 Oct; 142():490-500. PubMed ID: 29920459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Formation of Disinfection By-Products During Chlor(am)ination of Danjiangkou Reservoir Water and Comparison of Disinfection Processes].
    Zhang MS; Xu B; Zhang TY; Cheng T; Xia SJ; Chu WH
    Huan Jing Ke Xue; 2015 Sep; 36(9):3278-84. PubMed ID: 26717688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine.
    Zhang T; Xu B; Wang A; Cui C
    Chemosphere; 2018 Mar; 195():673-682. PubMed ID: 29289012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation kinetics of prometryn and formation of disinfection by-products during chlorination.
    Hu CY; Zhang JC; Lin YL; Ren SC; Zhu YY; Xiong C; Wang QB
    Chemosphere; 2021 Aug; 276():130089. PubMed ID: 33743417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the formation of nitrogenous disinfection by-products during chlorination of aspartic acid in drinking water.
    Chen W; Liu Z; Tao H; Xu H; Gu Y; Chen Z; Yu J
    Sci Total Environ; 2017 Jan; 575():519-524. PubMed ID: 27613669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Analysis of Haloacetonitrile Stability in Drinking Waters.
    Yu Y; Reckhow DA
    Environ Sci Technol; 2015 Sep; 49(18):11028-36. PubMed ID: 26275044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlor(am)ination of iopamidol: Kinetics, pathways and disinfection by-products formation.
    Tian FX; Xu B; Lin YL; Hu CY; Zhang TY; Xia SJ; Chu WH; Gao NY
    Chemosphere; 2017 Oct; 184():489-497. PubMed ID: 28618281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and Occurrence of N-Chloro-2,2-dichloroacetamide, a Previously Overlooked Nitrogenous Disinfection Byproduct in Chlorinated Drinking Waters.
    Yu Y; Reckhow DA
    Environ Sci Technol; 2017 Feb; 51(3):1488-1497. PubMed ID: 27996252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation kinetics and formation of regulated and emerging disinfection by-products during chlorination of two expectorants ambroxol and bromhexine.
    Wang W; Zhou Z; Ding S; Yang W; Jin W; Chu W; Xu Z
    Water Res; 2023 May; 235():119927. PubMed ID: 37023645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.
    Tan J; Allard S; Gruchlik Y; McDonald S; Joll CA; Heitz A
    Sci Total Environ; 2016 Jan; 541():1572-1580. PubMed ID: 26490534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.
    Doederer K; Gernjak W; Weinberg HS; Farré MJ
    Water Res; 2014 Jan; 48():218-28. PubMed ID: 24095593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of the antibacterial agent norfloxacin during sodium hypochlorite disinfection of marine culture water.
    Zhang Y; Rong C; Song Y; Wang Y; Pei J; Tang X; Zhang R; Yu K
    Chemosphere; 2017 Sep; 182():245-254. PubMed ID: 28500969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature and pH on dehalogenation of total organic chlorine, bromine and iodine in drinking water.
    Abusallout I; Rahman S; Hua G
    Chemosphere; 2017 Nov; 187():11-18. PubMed ID: 28787638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of metastable disinfection byproducts during free and combined aspartic acid chlorination: Effect of peptide bonds and impact on toxicity.
    Yu Y; Reckhow DA
    Water Res; 2020 Jan; 168():115131. PubMed ID: 31622913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation kinetics and chloropicrin formation during aqueous chlorination of dinoseb.
    Zhang TY; Xu B; Hu CY; Li M; Xia SJ; Tian FX; Gao NY
    Chemosphere; 2013 Nov; 93(11):2662-8. PubMed ID: 24034831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of the formation of unstable halogen-containing disinfection by-products based on the differential absorbance spectroscopy approach.
    Zhang C; Roccaro P; Yan M; Korshin GV
    Chemosphere; 2021 Apr; 268():129241. PubMed ID: 33359836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of bromine substitution factors of DBPs during chlorination and chloramination.
    Hua G; Reckhow DA
    Water Res; 2012 Sep; 46(13):4208-16. PubMed ID: 22687526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water.
    Jia A; Wu C; Duan Y
    J Hazard Mater; 2016 May; 308():411-8. PubMed ID: 26859617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.