These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 26315677)
1. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677 [TBL] [Abstract][Full Text] [Related]
2. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. Ling Y; Wang G; Wang H; Yang Y; Li Y ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003 [TBL] [Abstract][Full Text] [Related]
3. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes. Mao A; Shin K; Kim JK; Wang DH; Han GY; Park JH ACS Appl Mater Interfaces; 2011 Jun; 3(6):1852-8. PubMed ID: 21557610 [TBL] [Abstract][Full Text] [Related]
4. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. Seabold JA; Choi KS J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661 [TBL] [Abstract][Full Text] [Related]
5. High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation. Zhang L; Gao Y; Ding X; Yu Z; Sun L ChemSusChem; 2014 Oct; 7(10):2801-4. PubMed ID: 25139154 [TBL] [Abstract][Full Text] [Related]
6. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays. Wang L; Zhou X; Nguyen NT; Schmuki P ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403 [TBL] [Abstract][Full Text] [Related]
7. Activation of hematite nanorod arrays for photoelectrochemical water splitting. Morrish R; Rahman M; MacElroy JM; Wolden CA ChemSusChem; 2011 Apr; 4(4):474-9. PubMed ID: 21413153 [No Abstract] [Full Text] [Related]
8. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy. He W; Yang Y; Wang L; Yang J; Xiang X; Yan D; Li F ChemSusChem; 2015 May; 8(9):1568-76. PubMed ID: 25711390 [TBL] [Abstract][Full Text] [Related]
9. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods. Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962 [TBL] [Abstract][Full Text] [Related]
10. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes. Zhang Y; Ji H; Ma W; Chen C; Song W; Zhao J Molecules; 2016 Jul; 21(7):. PubMed ID: 27376262 [TBL] [Abstract][Full Text] [Related]
11. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation. Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756 [TBL] [Abstract][Full Text] [Related]
12. Water oxidation at hematite photoelectrodes: the role of surface states. Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953 [TBL] [Abstract][Full Text] [Related]
13. Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes. Hegner FS; Cardenas-Morcoso D; Giménez S; López N; Galan-Mascaros JR ChemSusChem; 2017 Nov; 10(22):4552-4560. PubMed ID: 28967707 [TBL] [Abstract][Full Text] [Related]
14. Solar driven water oxidation by a bioinspired manganese molecular catalyst. Brimblecombe R; Koo A; Dismukes GC; Swiegers GF; Spiccia L J Am Chem Soc; 2010 Mar; 132(9):2892-4. PubMed ID: 20155923 [TBL] [Abstract][Full Text] [Related]
15. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system. Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523 [TBL] [Abstract][Full Text] [Related]
16. Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts. Tseng HW; Wilker MB; Damrauer NH; Dukovic G J Am Chem Soc; 2013 Mar; 135(9):3383-6. PubMed ID: 23406271 [TBL] [Abstract][Full Text] [Related]
17. Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity. Lee CY; Wang L; Kado Y; Killian MS; Schmuki P ChemSusChem; 2014 Mar; 7(3):934-40. PubMed ID: 24677770 [TBL] [Abstract][Full Text] [Related]
18. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting. Wang L; Nguyen NT; Schmuki P ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809 [TBL] [Abstract][Full Text] [Related]
19. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. Sivula K; Le Formal F; Grätzel M ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621 [TBL] [Abstract][Full Text] [Related]
20. Dual Effect in Fluorine-Doped Hematite Nanocrystals for Efficient Water Oxidation. Xie J; Liu W; Xin J; Lei F; Gao L; Qu H; Zhang X; Xie Y ChemSusChem; 2017 Nov; 10(22):4465-4471. PubMed ID: 28801934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]