These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 26315811)
61. Structure and Reactivity of Indolylmethylium Ions: Scope and Limitations in Synthetic Applications. Follet E; Berionni G; Mayer P; Mayr H J Org Chem; 2015 Sep; 80(17):8643-56. PubMed ID: 26218059 [TBL] [Abstract][Full Text] [Related]
62. Nucleophilicity parameters for phosphoryl-stabilized carbanions and phosphorus ylides: implications for Wittig and related olefination reactions. Appel R; Loos R; Mayr H J Am Chem Soc; 2009 Jan; 131(2):704-14. PubMed ID: 19105684 [TBL] [Abstract][Full Text] [Related]
63. Influence of solvent mixture on nucleophilicity parameters: the case of pyrrolidine in methanol-acetonitrile. Souissi S; Gabsi W; Echaieb A; Roger J; Hierso JC; Fleurat-Lessard P; Boubaker T RSC Adv; 2020 Aug; 10(48):28635-28643. PubMed ID: 35520076 [TBL] [Abstract][Full Text] [Related]
64. Ambident reactivities of pyridone anions. Breugst M; Mayr H J Am Chem Soc; 2010 Nov; 132(43):15380-9. PubMed ID: 20942421 [TBL] [Abstract][Full Text] [Related]
65. Kinetics of the solvolyses of benzhydryl derivatives: basis for the construction of a comprehensive nucleofugality scale. Denegri B; Streiter A; Jurić S; Ofial AR; Kronja O; Mayr H Chemistry; 2006 Feb; 12(6):1648-56. PubMed ID: 16320366 [TBL] [Abstract][Full Text] [Related]
66. A Nucleophilicity Scale for the Reactivity of Diazaphospholenium Hydrides: Structural Insights and Synthetic Applications. Zhang J; Yang JD; Cheng JP Angew Chem Int Ed Engl; 2019 Apr; 58(18):5983-5987. PubMed ID: 30805968 [TBL] [Abstract][Full Text] [Related]
70. Electrophilicities of bissulfonyl ethylenes. Asahara H; Mayr H Chem Asian J; 2012 Jun; 7(6):1401-7. PubMed ID: 22454302 [TBL] [Abstract][Full Text] [Related]
71. Superelectrophilicity of the nitroolefinic fragment of 4-nitrobenzodifuroxan in Michael-type reactions with indoles: a kinetic study in acetonitrile. Lakhdar S; Goumont R; Berionni G; Boubaker T; Kurbatov S; Terrier F Chemistry; 2007; 13(29):8317-24. PubMed ID: 17642071 [TBL] [Abstract][Full Text] [Related]
72. Structures, Lewis Acidities, Electrophilicities, and Protecting Group Abilities of Phenylfluorenylium and Tritylium Ions. Follet E; Mayer P; Berionni G Chemistry; 2017 Jan; 23(3):623-630. PubMed ID: 27723164 [TBL] [Abstract][Full Text] [Related]
73. Ethenesulfonyl Fluoride: The Most Perfect Michael Acceptor Ever Found? Chen Q; Mayer P; Mayr H Angew Chem Int Ed Engl; 2016 Oct; 55(41):12664-7. PubMed ID: 27159425 [TBL] [Abstract][Full Text] [Related]
74. Nucleophilic reactivities of carbanions in water: the unique behavior of the malodinitrile anion. Bug T; Mayr H J Am Chem Soc; 2003 Oct; 125(42):12980-6. PubMed ID: 14558847 [TBL] [Abstract][Full Text] [Related]
75. Characterization of the nucleophilic reactivities of thiocarboxylate, dithiocarbonate and dithiocarbamate anions. Duan XH; Maji B; Mayr H Org Biomol Chem; 2011 Dec; 9(23):8046-50. PubMed ID: 21975968 [TBL] [Abstract][Full Text] [Related]
76. Di- and triarylmethylium ions as probes for the ambident reactivities of carbanions derived from 5-benzylated Meldrum's acid. Chen X; Tan Y; Berionni G; Ofial AR; Mayr H Chemistry; 2014 Aug; 20(35):11069-77. PubMed ID: 25099696 [TBL] [Abstract][Full Text] [Related]
77. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations. Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113 [TBL] [Abstract][Full Text] [Related]
78. Time-dependent evolution of adducts formed between deoxynucleosides and a model quinone methide. Weinert EE; Frankenfield KN; Rokita SE Chem Res Toxicol; 2005 Sep; 18(9):1364-70. PubMed ID: 16167827 [TBL] [Abstract][Full Text] [Related]
79. Mechanisms of hydride abstractions by quinones. Guo X; Zipse H; Mayr H J Am Chem Soc; 2014 Oct; 136(39):13863-73. PubMed ID: 25196576 [TBL] [Abstract][Full Text] [Related]
80. Nucleophilicity parameters of enamides and their implications for organocatalytic transformations. Maji B; Lakhdar S; Mayr H Chemistry; 2012 Apr; 18(18):5732-40. PubMed ID: 22461320 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]