These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26315811)

  • 101. Enantioselective [4 + 2] cycloadditions of o-quinone methides: total synthesis of (+)-mimosifoliol and formal synthesis of (+)-tolterodine.
    Selenski C; Pettus TR
    J Org Chem; 2004 Dec; 69(26):9196-203. PubMed ID: 15609955
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Electrophilic reactivities of cyclic enones and α,β-unsaturated lactones.
    Mayer RJ; Allihn PWA; Hampel N; Mayer P; Sieber SA; Ofial AR
    Chem Sci; 2021 Feb; 12(13):4850-4865. PubMed ID: 34163736
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Scope and Mechanisms of Frustrated Lewis Pair Catalyzed Hydrogenation Reactions of Electron-Deficient C=C Double Bonds.
    Morozova V; Mayer P; Berionni G
    Angew Chem Int Ed Engl; 2015 Nov; 54(48):14508-12. PubMed ID: 26493512
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Catalytic Asymmetric 1,6-Conjugate Addition of para-Quinone Methides: Formation of All-Carbon Quaternary Stereocenters.
    Wang Z; Wong YF; Sun J
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13711-4. PubMed ID: 26403542
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles--application to alpha,beta-unsaturated ketones, acrylates, and propiolates.
    Böhme A; Thaens D; Paschke A; Schüürmann G
    Chem Res Toxicol; 2009 Apr; 22(4):742-50. PubMed ID: 19317512
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study.
    Domingo LR; Chamorro E; Pérez P
    J Org Chem; 2008 Jun; 73(12):4615-24. PubMed ID: 18484771
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Mechanisms of soft and hard electrophile toxicities.
    LoPachin RM; Geohagen BC; Nordstroem LU
    Toxicology; 2019 Apr; 418():62-69. PubMed ID: 30826385
    [TBL] [Abstract][Full Text] [Related]  

  • 108. A Tale of Two Elements: The Lewis Acidity/Basicity Umpolung of Boron and Phosphorus.
    Stephan DW
    Angew Chem Int Ed Engl; 2017 May; 56(22):5984-5992. PubMed ID: 28195386
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Towards a comprehensive hydride donor ability scale.
    Horn M; Schappele LH; Lang-Wittkowski G; Mayr H; Ofial AR
    Chemistry; 2013 Jan; 19(1):249-63. PubMed ID: 23203839
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Mechanistic assessment of S(N)Ar displacement of halides from 1-halo-2,4-dinitrobenzenes by selected primary and secondary amines: Brønsted and Mayr analyses.
    Um IH; Im LR; Kang JS; Bursey SS; Dust JM
    J Org Chem; 2012 Nov; 77(21):9738-46. PubMed ID: 23025909
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Electrophilicities of symmetrically substituted 1,3-diarylallyl cations.
    Troshin K; Schindele C; Mayr H
    J Org Chem; 2011 Nov; 76(22):9391-408. PubMed ID: 21939207
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Exploration of the Synthetic Potential of Electrophilic Trifluoromethylthiolating and Difluoromethylthiolating Reagents.
    Zhang J; Yang JD; Zheng H; Xue XS; Mayr H; Cheng JP
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12690-12695. PubMed ID: 29989309
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Structure-activity relationships for thiol reactivity and rat or human hepatocyte toxicity induced by substituted p-benzoquinone compounds.
    Chan K; Jensen N; O'Brien PJ
    J Appl Toxicol; 2008 Jul; 28(5):608-20. PubMed ID: 17975849
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Structure-activity relationships for degradation reaction of 1-beta-o-acyl glucuronides: kinetic description and prediction of intrinsic electrophilic reactivity under physiological conditions.
    Baba A; Yoshioka T
    Chem Res Toxicol; 2009 Jan; 22(1):158-72. PubMed ID: 19105593
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Regioselectivity for condensation reactions of quinonoid models of tryptophan tryptophylquinone: a density functional theory study.
    Zou JW; Liang JM; Yu CH
    J Org Chem; 2003 May; 68(9):3626-33. PubMed ID: 12713371
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Intrinsic relative scales of electrophilicity and nucleophilicity.
    Chamorro E; Duque-Noreña M; Notario R; Pérez P
    J Phys Chem A; 2013 Mar; 117(12):2636-43. PubMed ID: 23350794
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Electrophilicity parameters for benzylidenemalononitriles.
    Lemek T; Mayr H
    J Org Chem; 2003 Sep; 68(18):6880-6. PubMed ID: 12946126
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Mayr electrophilicity predicts the dual Diels-Alder and sigma-adduct formation behaviour of heteroaromatic super-electrophiles.
    Lakhdar S; Goumont R; Terrier F; Boubaker T; Dust JM; Buncel E
    Org Biomol Chem; 2007 Jun; 5(11):1744-51. PubMed ID: 17520143
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile.
    Zhu XQ; Zhang MT; Yu A; Wang CH; Cheng JP
    J Am Chem Soc; 2008 Feb; 130(8):2501-16. PubMed ID: 18254624
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Do More Electrophilic Aldehydes/Ketones Exhibit Higher Reactivity toward Nucleophiles in the Presence of Lewis Acids?
    Asao N; Asano T; Yamamoto Y
    Angew Chem Int Ed Engl; 2001 Sep; 40(17):3206-3208. PubMed ID: 29712037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.