BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26315905)

  • 21. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices.
    Li D; Luo R; Liu CM; Leung CM; Ting HF; Sadakane K; Yamashita H; Lam TW
    Methods; 2016 Jun; 102():3-11. PubMed ID: 27012178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gossamer--a resource-efficient de novo assembler.
    Conway T; Wazny J; Bromage A; Zobel J; Beresford-Smith B
    Bioinformatics; 2012 Jul; 28(14):1937-8. PubMed ID: 22611131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LSG: An External-Memory Tool to Compute String Graphs for Next-Generation Sequencing Data Assembly.
    Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2016 Mar; 23(3):137-49. PubMed ID: 26953874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomes.
    Minkin I; Pham S; Medvedev P
    Bioinformatics; 2017 Dec; 33(24):4024-4032. PubMed ID: 27659452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Building large updatable colored de Bruijn graphs via merging.
    Muggli MD; Alipanahi B; Boucher C
    Bioinformatics; 2019 Jul; 35(14):i51-i60. PubMed ID: 31510647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aligning optical maps to de Bruijn graphs.
    Mukherjee K; Alipanahi B; Kahveci T; Salmela L; Boucher C
    Bioinformatics; 2019 Sep; 35(18):3250-3256. PubMed ID: 30698651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turtle: identifying frequent k-mers with cache-efficient algorithms.
    Roy RS; Bhattacharya D; Schliep A
    Bioinformatics; 2014 Jul; 30(14):1950-7. PubMed ID: 24618471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cuttlefish: fast, parallel and low-memory compaction of de Bruijn graphs from large-scale genome collections.
    Khan J; Patro R
    Bioinformatics; 2021 Jul; 37(Suppl_1):i177-i186. PubMed ID: 34252958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient algorithm for DNA fragment assembly in MapReduce.
    Xu B; Gao J; Li C
    Biochem Biophys Res Commun; 2012 Sep; 426(3):395-8. PubMed ID: 22960169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inference of viral quasispecies with a paired de Bruijn graph.
    Freire B; Ladra S; Paramá JR; Salmela L
    Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast de Bruijn Graph Compaction in Distributed Memory Environments.
    Pan T; Nihalani R; Aluru S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):136-148. PubMed ID: 30072337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FSG: Fast String Graph Construction for De Novo Assembly.
    Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2017 Oct; 24(10):953-968. PubMed ID: 28715269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RAMPART: a workflow management system for de novo genome assembly.
    Mapleson D; Drou N; Swarbreck D
    Bioinformatics; 2015 Jun; 31(11):1824-6. PubMed ID: 25637556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploiting sparseness in de novo genome assembly.
    Ye C; Ma ZS; Cannon CH; Pop M; Yu DW
    BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S1. PubMed ID: 22537038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. deBWT: parallel construction of Burrows-Wheeler Transform for large collection of genomes with de Bruijn-branch encoding.
    Liu B; Zhu D; Wang Y
    Bioinformatics; 2016 Jun; 32(12):i174-i182. PubMed ID: 27307614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores.
    Meng J; Wang B; Wei Y; Feng S; Balaji P
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S2. PubMed ID: 25253533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iterative error correction of long sequencing reads maximizes accuracy and improves contig assembly.
    Sameith K; Roscito JG; Hiller M
    Brief Bioinform; 2017 Jan; 18(1):1-8. PubMed ID: 26868358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.