These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26315905)

  • 41. Kollector: transcript-informed, targeted de novo assembly of gene loci.
    Kucuk E; Chu J; Vandervalk BP; Hammond SA; Warren RL; Birol I
    Bioinformatics; 2017 Jun; 33(12):1782-1788. PubMed ID: 28186221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PE-Assembler: de novo assembler using short paired-end reads.
    Ariyaratne PN; Sung WK
    Bioinformatics; 2011 Jan; 27(2):167-74. PubMed ID: 21149345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using Apache Spark on genome assembly for scalable overlap-graph reduction.
    Paul AJ; Lawrence D; Song M; Lim SH; Pan C; Ahn TH
    Hum Genomics; 2019 Oct; 13(Suppl 1):48. PubMed ID: 31639049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Succinct dynamic de Bruijn graphs.
    Alipanahi B; Kuhnle A; Puglisi SJ; Salmela L; Boucher C
    Bioinformatics; 2021 Aug; 37(14):1946-1952. PubMed ID: 32462192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bandage: interactive visualization of de novo genome assemblies.
    Wick RR; Schultz MB; Zobel J; Holt KE
    Bioinformatics; 2015 Oct; 31(20):3350-2. PubMed ID: 26099265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DSK: k-mer counting with very low memory usage.
    Rizk G; Lavenier D; Chikhi R
    Bioinformatics; 2013 Mar; 29(5):652-3. PubMed ID: 23325618
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SimkaMin: fast and resource frugal de novo comparative metagenomics.
    Benoit G; Mariadassou M; Robin S; Schbath S; Peterlongo P; Lemaitre C
    Bioinformatics; 2020 Feb; 36(4):1275-1276. PubMed ID: 31504187
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accurate determination of node and arc multiplicities in de bruijn graphs using conditional random fields.
    Steyaert A; Audenaert P; Fostier J
    BMC Bioinformatics; 2020 Sep; 21(1):402. PubMed ID: 32928110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and Insert Size Distribution.
    Li M; Liao Z; He Y; Wang J; Luo J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):916-925. PubMed ID: 27076460
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Readjoiner: a fast and memory efficient string graph-based sequence assembler.
    Gonnella G; Kurtz S
    BMC Bioinformatics; 2012 May; 13():82. PubMed ID: 22559072
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data.
    Soorni A; Haak D; Zaitlin D; Bombarely A
    BMC Genomics; 2017 Jan; 18(1):49. PubMed ID: 28061749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome-scale de novo assembly using ALGA.
    Swat S; Laskowski A; Badura J; Frohmberg W; Wojciechowski P; Swiercz A; Kasprzak M; Blazewicz J
    Bioinformatics; 2021 Jul; 37(12):1644-1651. PubMed ID: 33471088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Memory efficient assembly of human genome.
    Hormozdiari F; Eskin E
    J Bioinform Comput Biol; 2015 Apr; 13(2):1550008. PubMed ID: 25603998
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast and efficient Rmap assembly using the Bi-labelled de Bruijn graph.
    Mukherjee K; Rossi M; Salmela L; Boucher C
    Algorithms Mol Biol; 2021 May; 16(1):6. PubMed ID: 34034751
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BubbleGun: enumerating bubbles and superbubbles in genome graphs.
    Dabbaghie F; Ebler J; Marschall T
    Bioinformatics; 2022 Sep; 38(17):4217-4219. PubMed ID: 35799353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2012 Jun; 28(11):1420-8. PubMed ID: 22495754
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the representation of de Bruijn graphs.
    Chikhi R; Limasset A; Jackman S; Simpson JT; Medvedev P
    J Comput Biol; 2015 May; 22(5):336-52. PubMed ID: 25629448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform.
    Baier U; Beller T; Ohlebusch E
    Bioinformatics; 2016 Feb; 32(4):497-504. PubMed ID: 26504144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. deBGA: read alignment with de Bruijn graph-based seed and extension.
    Liu B; Guo H; Brudno M; Wang Y
    Bioinformatics; 2016 Nov; 32(21):3224-3232. PubMed ID: 27378303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Succinct data structures for assembling large genomes.
    Conway TC; Bromage AJ
    Bioinformatics; 2011 Feb; 27(4):479-86. PubMed ID: 21245053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.