These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26316192)

  • 1. A New Thermal Conductivity Model With Shaped Factor Ferromagnetism Nanoparticles Study for the Blood Flow in Non-Tapered Stenosed Arteries.
    Akbar NS
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):780-9. PubMed ID: 26316192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological structural study of emerging shaped nanoparticles for the blood flow in diverging tapered stenosed arteries to see their application in drug delivery.
    Akbar NS; Habib MB; Rafiq M; Muhammad T; Alghamdi M
    Sci Rep; 2024 Jan; 14(1):1475. PubMed ID: 38233426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood flow suspension in tapered stenosed arteries for Walter's B fluid model.
    Akbar NS
    Comput Methods Programs Biomed; 2016 Aug; 132():45-55. PubMed ID: 27282226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Investigation of Oxygenated and Deoxygenated Blood Flow through a Tapered Stenosed Arteries in Magnetic Field.
    Abdollahzadeh Jamalabadi MY; Akbari Bidokhti AA; Khak Rah H; Vaezi S; Hooshmand P
    PLoS One; 2016; 11(12):e0167393. PubMed ID: 27941986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on hemodynamic characteristics at the stenosed blood vessel using computational fluid dynamics simulations.
    Park YR; Kim SJ; Kim SJ; Kim JS; Kang HS; Kim GB
    J Biomed Nanotechnol; 2013 Jul; 9(7):1137-45. PubMed ID: 23909127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of Hall currents on hybrid nano-blood flow through an inclined artery having mild stenosis: Homotopy perturbation approach.
    Das S; Pal TK; Jana RN; Giri B
    Microvasc Res; 2021 Sep; 137():104192. PubMed ID: 34081994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: NON-Newtonian pharmacodynamic simulation.
    Vasu B; Dubey A; Bég OA; Gorla RSR
    Comput Biol Med; 2020 Nov; 126():104025. PubMed ID: 33074112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influences of stenosis on the downstream flow pattern in curved arteries.
    Liu B
    Med Eng Phys; 2007 Oct; 29(8):868-76. PubMed ID: 17081795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Analysis of Metallic Nanoparticles on Blood Flow Through Tapered Elastic Artery With Overlapping Stenosis.
    Nadeem S; Ijaz S
    IEEE Trans Nanobioscience; 2015 Jun; 14(4):417-428. PubMed ID: 25594976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects.
    Tripathi J; Vasu B; Bég OA; Mounika BR; Gorla RSR
    Microvasc Res; 2022 Jan; 139():104241. PubMed ID: 34508788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel.
    Ali N; Zaman A; Sajid M; Nieto JJ; Torres A
    Math Biosci; 2015 Nov; 269():94-103. PubMed ID: 26361287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of nanoparticles as a drug carrier on blood flow through catheterized composite stenosed artery with permeable walls.
    Ijaz S; Nadeem S
    Comput Methods Programs Biomed; 2016 Sep; 133():83-94. PubMed ID: 27393802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases.
    Chaturani P; Samy RP
    Biorheology; 1985; 22(6):521-31. PubMed ID: 3834958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medical application oriented blood flow simulation.
    Qiao A; Liu Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S130-6. PubMed ID: 18023946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
    Gul A; Khan I; Shafie S; Khalid A; Khan A
    PLoS One; 2015; 10(11):e0141213. PubMed ID: 26550837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Momentum integral method for studying flow characteristics of blood through a stenosed vessel.
    Misra JC; Kar BK
    Biorheology; 1989; 26(1):23-35. PubMed ID: 2804272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of non-Newtonian blood flow through stenosed arteries in the presence of magnetic field.
    Alshare A; Tashtoush B; El-Khalil HH
    J Biomech Eng; 2013 Nov; 135(11):114503. PubMed ID: 24061603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis.
    Elnaqeeb T; Mekheimer KS; Alghamdi F
    Math Biosci; 2016 Dec; 282():135-146. PubMed ID: 27789351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.