These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26316306)

  • 1. Thermal luminescence quenching of amine-functionalized silicon quantum dots: a pH and wavelength-dependent study.
    Chatterjee S; Mukherjee TK
    Phys Chem Chem Phys; 2015 Oct; 17(37):24078-85. PubMed ID: 26316306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton-phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots.
    Jagtap AM; Khatei J; Koteswara Rao KS
    Phys Chem Chem Phys; 2015 Nov; 17(41):27579-87. PubMed ID: 26426345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots.
    Yuan X; Zheng J; Zeng R; Jing P; Ji W; Zhao J; Yang W; Li H
    Nanoscale; 2014 Jan; 6(1):300-7. PubMed ID: 24192996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry.
    Kalytchuk S; Zhovtiuk O; Kershaw SV; Zbořil R; Rogach AL
    Small; 2016 Jan; 12(4):466-76. PubMed ID: 26618345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the excitation wavelength dependent spectral shift and large exciton binding energy of tungsten disulfide quantum dots and its interaction with single-walled carbon nanotubes.
    Bora A; Mawlong LPL; Das R; Giri PK
    J Colloid Interface Sci; 2020 Mar; 561():519-532. PubMed ID: 31740135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of quantum dot luminescence excitation within implanted SiO2:Si:C films.
    Zatsepin AF; Buntov EA; Kortov VS; Tetelbaum DI; Mikhaylov AN; Belov AI
    J Phys Condens Matter; 2012 Feb; 24(4):045301. PubMed ID: 22214549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Water Adsorption on the Photoluminescence of Silicon Quantum Dots.
    Yang J; Fang H; Gao Y
    J Phys Chem Lett; 2016 May; 7(10):1788-93. PubMed ID: 27117881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal stability of photoluminescence in Cu-doped Zn-In-S quantum dots for light-emitting diodes.
    Yuan X; Ma R; Hua J; Liu Y; Li J; Zhang W; Zhao J; Li H
    Phys Chem Chem Phys; 2016 Apr; 18(16):10976-82. PubMed ID: 27043791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freestanding silicon quantum dots: origin of red and blue luminescence.
    Gupta A; Wiggers H
    Nanotechnology; 2011 Feb; 22(5):055707. PubMed ID: 21178223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bright Tail States in Blue-Emitting Ultrasmall Perovskite Quantum Dots.
    Li J; Gan L; Fang Z; He H; Ye Z
    J Phys Chem Lett; 2017 Dec; 8(24):6002-6008. PubMed ID: 29192491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Luminescence of CsPbBr
    Liu X; Zhang X; Li L; Xu J; Yu S; Gong X; Zhang J; Yin H
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40923-40931. PubMed ID: 31588719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine.
    Ji X; Palui G; Avellini T; Na HB; Yi C; Knappenberger KL; Mattoussi H
    J Am Chem Soc; 2012 Apr; 134(13):6006-17. PubMed ID: 22394283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and control of the origin of photoluminescence from silicon quantum dots.
    Hao HL; Shen WZ
    Nanotechnology; 2008 Nov; 19(45):455704. PubMed ID: 21832793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the effect of Zn doping and temperature on the photoluminescence behaviour of CuLaSe
    Çadırcı M; Elibol E; Demirci T; Kurban M
    Luminescence; 2024 Apr; 39(4):e4722. PubMed ID: 38532615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier dynamics and activation energy of CdxZn(1-x)Te/ZnTe quantum dots on GaAs and Si substrates.
    Lee HS; Yim SY; Kim TW; Park HL
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7185-8. PubMed ID: 22103153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.