These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26316306)

  • 21. Strong infrared photoluminescence from black silicon made with femtosecond laser irradiation.
    Lü Q; Wang J; Liang C; Zhao L; Jiang Z
    Opt Lett; 2013 Apr; 38(8):1274-6. PubMed ID: 23595456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discrete states and carrier-phonon scattering in quantum dot population dynamics.
    Man MT; Lee HS
    Sci Rep; 2015 Feb; 5():8267. PubMed ID: 25652600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature dependence of photoluminescence dynamics of self-assembled monolayers of CdSe quantum dots: the influence of the bound-exciton state.
    Kim D; Yokota H; Shimura K; Nakayama M
    Phys Chem Chem Phys; 2013 Dec; 15(48):21051-7. PubMed ID: 24220232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable photoluminescence from nc-Si/a-SiNx:H quantum dot thin films prepared by ICP-CVD.
    Sain B; Das D
    Phys Chem Chem Phys; 2013 Mar; 15(11):3881-8. PubMed ID: 23407687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Temperature-Dependent Photoluminescence Property Studies of SiN(x) Films with nc-Si].
    Liu JP; Zheng Y; Liu HX; Yu W; Ding WG; Lai WD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):653-6. PubMed ID: 27400499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size-dependent penetration of carbon dots inside the ferritin nanocages: evidence for the quantum confinement effect in carbon dots.
    Bhattacharya A; Chatterjee S; Prajapati R; Mukherjee TK
    Phys Chem Chem Phys; 2015 May; 17(19):12833-40. PubMed ID: 25906758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modification of CdTe quantum dots as temperature-insensitive bioprobes.
    Wang JH; Wang HQ; Li YQ; Zhang HL; Li XQ; Hua XF; Cao YC; Huang ZL; Zhao YD
    Talanta; 2008 Jan; 74(4):724-9. PubMed ID: 18371700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subsecond luminescence intensity fluctuations of single CdSe quantum dots.
    Biju V; Makita Y; Nagase T; Yamaoka Y; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Aug; 109(30):14350-5. PubMed ID: 16852805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopy of Surface-State p-Doped CdSe/CdS Quantum Dots.
    Morgan D; Kelley DF
    J Phys Chem Lett; 2018 Aug; 9(15):4160-4165. PubMed ID: 29991256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pH-dependent photoluminescence of colloidal CdSe/ZnS quantum dots with different organic coatings.
    Debruyne D; Deschaume O; Coutiño-Gonzalez E; Locquet JP; Hofkens J; Van Bael MJ; Bartic C
    Nanotechnology; 2015 Jan; 26(25):255703. PubMed ID: 26031426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.
    Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC
    ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silicon nanoparticle photophysics and singlet oxygen generation.
    Llansola Portolés MJ; Gara PM; Kotler ML; Bertolotti S; San Román E; Rodríguez HB; Gonzalez MC
    Langmuir; 2010 Jul; 26(13):10953-60. PubMed ID: 20491505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional Si and CdSe quantum dots: synthesis, conjugate formation, and photoluminescence quenching by surface interactions.
    Sudeep PK; Emrick T
    ACS Nano; 2009 Dec; 3(12):4105-9. PubMed ID: 19908857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature dependence of the photoluminescence from ensembles of amorphous silicon nanoparticles with various average sizes.
    Brüggemann R; Nesheva D; Meier S; Bineva I
    J Nanosci Nanotechnol; 2011 Feb; 11(2):959-65. PubMed ID: 21456125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots.
    Sun J; Ikezawa M; Wang X; Jing P; Li H; Zhao J; Masumoto Y
    Phys Chem Chem Phys; 2015 May; 17(18):11981-9. PubMed ID: 25728207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impurity Location-Dependent Relaxation Dynamics of Cu:CdS Quantum Dots.
    Choi D; Pyo JY; Jang DJ
    Nanoscale Res Lett; 2017 Dec; 12(1):49. PubMed ID: 28101854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The nature of non-FRET photoluminescence quenching in nanoassemblies from semiconductor quantum dots and dye molecules.
    Stupak AP; Blaudeck T; Zenkevich EI; Krause S; von Borczyskowski C
    Phys Chem Chem Phys; 2018 Jul; 20(27):18579-18600. PubMed ID: 29953143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals.
    Wen X; Zhang P; Smith TA; Anthony RJ; Kortshagen UR; Yu P; Feng Y; Shrestha S; Coniber G; Huang S
    Sci Rep; 2015 Jul; 5():12469. PubMed ID: 26198209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.
    Ghosh R; Giri PK; Imakita K; Fujii M
    Nanotechnology; 2014 Jan; 25(4):045703. PubMed ID: 24394591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-sensitive photoluminescence of CdSe quantum dot clusters.
    Biju V; Makita Y; Sonoda A; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Jul; 109(29):13899-905. PubMed ID: 16852744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.