These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26316306)

  • 41. One- and Two-Photon Excited Photoluminescence and Suppression of Thermal Quenching of CsSnBr
    Wu ZY; Zhuang JH; Lin YT; Chou YH; Wu PC; Wu CL; Chen P; Hsu HC
    ACS Nano; 2021 Dec; 15(12):19613-19620. PubMed ID: 34784180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-temperature luminescence quenching of colloidal quantum dots.
    Zhao Y; Riemersma C; Pietra F; Koole R; Donegá Cde M; Meijerink A
    ACS Nano; 2012 Oct; 6(10):9058-67. PubMed ID: 22978378
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low temperature photoluminescence properties of CsPbBr
    Ai B; Liu C; Deng Z; Wang J; Han J; Zhao X
    Phys Chem Chem Phys; 2017 Jul; 19(26):17349-17355. PubMed ID: 28650051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetic-excitation-assisted photoluminescence from self-trapped exciton states in MnO.
    Nishitani J; Nagashima T; Suemoto T
    J Phys Condens Matter; 2016 Jan; 28(1):016004. PubMed ID: 26657491
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Excitation Energy Dependence of the Photoluminescence Quantum Yields of Core and Core/Shell Quantum Dots.
    Hoy J; Morrison PJ; Steinberg LK; Buhro WE; Loomis RA
    J Phys Chem Lett; 2013 Jun; 4(12):2053-60. PubMed ID: 26283252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature and excitation density dependent photoluminescence of sputtering-induced GaAs/AlGaAs quantum dots.
    Wang Y; Yoon SF; Liu CY; Ngo CY; Ahn J
    Nanotechnology; 2008 Jan; 19(1):015602. PubMed ID: 21730537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Volatile interface of biological oxidant and luminescent CdTe quantum dots: implications in nanodiagnostics.
    Priyam A; Bhattacharya SC; Saha A
    Phys Chem Chem Phys; 2009 Jan; 11(3):520-7. PubMed ID: 19283269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Size-dependent activation energy and carrier dynamics in Cd(x)Zn(1-x)Te/ZnTe quantum dots on Si substrates.
    Lee HS
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8735-8. PubMed ID: 25958594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoluminescence of charged CdSe/ZnS quantum dots in the gas phase: effects of charge and heating on absorption and emission probabilities.
    Howder CR; Long BA; Bell DM; Furakawa KH; Johnson RC; Fang Z; Anderson SL
    ACS Nano; 2014 Dec; 8(12):12534-48. PubMed ID: 25427008
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temperature and excitation wavelength-dependent photoluminescence of CH
    Wang Q; Wu W
    Opt Lett; 2018 Oct; 43(20):4923-4926. PubMed ID: 30320784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrafast Exciton Dynamics in Silicon Nanowires.
    Wheeler DA; Huang JA; Newhouse RJ; Zhang WF; Lee ST; Zhang JZ
    J Phys Chem Lett; 2012 Mar; 3(6):766-71. PubMed ID: 26286288
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning optical properties of Si quantum dots by π-conjugated capping molecules.
    Dung MX; Tung DD; Jeong S; Jeong HD
    Chem Asian J; 2013 Mar; 8(3):653-64. PubMed ID: 23307703
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals.
    Sykora M; Koposov AY; McGuire JA; Schulze RK; Tretiak O; Pietryga JM; Klimov VI
    ACS Nano; 2010 Apr; 4(4):2021-34. PubMed ID: 20369900
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ZnSe quantum dots.
    Kim MR; Chung JH; Lee M; Lee S; Jang DJ
    J Colloid Interface Sci; 2010 Oct; 350(1):5-9. PubMed ID: 20619850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Origin of humidity influencing the excited state electronic properties of silicon quantum dot based light-emitting diodes.
    Xiong L; He X; Yang J
    Phys Chem Chem Phys; 2022 Nov; 24(46):28222-28231. PubMed ID: 36382429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-resolved photoluminescence spectra of Si species encapsulated in zeolite supercages.
    Tanaka K; Komatsu Y; Choo CK
    J Phys Chem B; 2005 Jan; 109(2):736-42. PubMed ID: 16866435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A dipole-dipole interaction tuning the photoluminescence of silicon quantum dots in a water vapor environment.
    Yang J; Gao Y
    Nanoscale; 2019 Jan; 11(4):1790-1797. PubMed ID: 30631872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of the structure on luminescent characteristics of SRO-based light emitting capacitors.
    Palacios-Huerta L; Cabañas-Tay SA; Luna-López JA; Aceves-Mijares M; Coyopol A; Morales-Sánchez A
    Nanotechnology; 2015 Oct; 26(39):395202. PubMed ID: 26360552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.