BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26317137)

  • 21. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana.
    Vandenabeele S; Vanderauwera S; Vuylsteke M; Rombauts S; Langebartels C; Seidlitz HK; Zabeau M; Van Montagu M; Inzé D; Van Breusegem F
    Plant J; 2004 Jul; 39(1):45-58. PubMed ID: 15200641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycolate oxidase-dependent H
    Li X; Liao M; Huang J; Xu Z; Lin Z; Ye N; Zhang Z; Peng X
    BMC Plant Biol; 2021 Jul; 21(1):326. PubMed ID: 34229625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Day length is a key regulator of transcriptomic responses to both CO(2) and H(2)O(2) in Arabidopsis.
    Queval G; Neukermans J; Vanderauwera S; Van Breusegem F; Noctor G
    Plant Cell Environ; 2012 Feb; 35(2):374-87. PubMed ID: 21631535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes Photosynthesis and Photorespiration of Arabidopsis thaliana.
    Timm S; Wittmiß M; Gamlien S; Ewald R; Florian A; Frank M; Wirtz M; Hell R; Fernie AR; Bauwe H
    Plant Cell; 2015 Jul; 27(7):1968-84. PubMed ID: 26116608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid.
    Rahman A; Nakasone A; Chhun T; Ooura C; Biswas KK; Uchimiya H; Tsurumi S; Baskin TI; Tanaka A; Oono Y
    Plant J; 2006 Sep; 47(5):788-801. PubMed ID: 16923017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially.
    Sewelam N; Jaspert N; Van Der Kelen K; Tognetti VB; Schmitz J; Frerigmann H; Stahl E; Zeier J; Van Breusegem F; Maurino VG
    Mol Plant; 2014 Jul; 7(7):1191-210. PubMed ID: 24908268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Going the distance with auxin: unravelling the molecular basis of auxin transport.
    Bennett MJ; Marchant A; May ST; Swarup R
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1511-5. PubMed ID: 9800211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence of oxidative attenuation of auxin signalling.
    Peer WA; Cheng Y; Murphy AS
    J Exp Bot; 2013 Jun; 64(9):2629-39. PubMed ID: 23709674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence.
    Sørhagen K; Laxa M; Peterhänsel C; Reumann S
    Plant Biol (Stuttg); 2013 Jul; 15(4):723-36. PubMed ID: 23506300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2.
    Sato A; Sasaki S; Matsuzaki J; Yamamoto KT
    Plant Signal Behav; 2015; 10(3):e990838. PubMed ID: 25738325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A genetic screen for mutants defective in IAA1-LUC degradation in Arabidopsis thaliana reveals an important requirement for TOPOISOMERASE6B in auxin physiology.
    Gilkerson J; Callis J
    Plant Signal Behav; 2014; 9(10):e972207. PubMed ID: 25482814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate:glyoxylate aminotransferase modulates amino acid content during photorespiration.
    Igarashi D; Tsuchida H; Miyao M; Ohsumi C
    Plant Physiol; 2006 Nov; 142(3):901-10. PubMed ID: 16950862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling.
    Foyer CH; Bloom AJ; Queval G; Noctor G
    Annu Rev Plant Biol; 2009; 60():455-84. PubMed ID: 19575589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AtFtsH4 perturbs the mitochondrial respiratory chain complexes and auxin homeostasis in Arabidopsis.
    Zhang S; Zhang D; Yang C
    Plant Signal Behav; 2014; 9(9):e29709. PubMed ID: 25763704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auxin: regulation, action, and interaction.
    Woodward AW; Bartel B
    Ann Bot; 2005 Apr; 95(5):707-35. PubMed ID: 15749753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana.
    Pelagio-Flores R; Ortíz-Castro R; Méndez-Bravo A; Macías-Rodríguez L; López-Bucio J
    Plant Cell Physiol; 2011 Mar; 52(3):490-508. PubMed ID: 21252298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling.
    Bailly A; Groenhagen U; Schulz S; Geisler M; Eberl L; Weisskopf L
    Plant J; 2014 Dec; 80(5):758-71. PubMed ID: 25227998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana.
    Gonzali S; Novi G; Loreti E; Paolicchi F; Poggi A; Alpi A; Perata P
    Plant J; 2005 Nov; 44(4):633-45. PubMed ID: 16262712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.
    Shimizu-Mitao Y; Kakimoto T
    Plant Cell Physiol; 2014 Aug; 55(8):1450-9. PubMed ID: 24880779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The benefits of photorespiratory bypasses: how can they work?
    Xin CP; Tholen D; Devloo V; Zhu XG
    Plant Physiol; 2015 Feb; 167(2):574-85. PubMed ID: 25516604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.