These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26317328)

  • 1. Syringe Injectable Electronics: Precise Targeted Delivery with Quantitative Input/Output Connectivity.
    Hong G; Fu TM; Zhou T; Schuhmann TG; Huang J; Lieber CM
    Nano Lett; 2015 Oct; 15(10):6979-84. PubMed ID: 26317328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.
    Schuhmann TG; Yao J; Hong G; Fu TM; Lieber CM
    Nano Lett; 2017 Sep; 17(9):5836-5842. PubMed ID: 28787578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoenabled Direct Contact Interfacing of Syringe-Injectable Mesh Electronics.
    Lee JM; Hong G; Lin D; Schuhmann TG; Sullivan AT; Viveros RD; Park HG; Lieber CM
    Nano Lett; 2019 Aug; 19(8):5818-5826. PubMed ID: 31361503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.
    Zhou T; Hong G; Fu TM; Yang X; Schuhmann TG; Viveros RD; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5894-5899. PubMed ID: 28533392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology.
    Schuhmann TG; Zhou T; Hong G; Lee JM; Fu TM; Park HG; Lieber CM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30080192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced One- and Two-Dimensional Mesh Designs for Injectable Electronics.
    Viveros RD; Zhou T; Hong G; Fu TM; Lin HG; Lieber CM
    Nano Lett; 2019 Jun; 19(6):4180-4187. PubMed ID: 31075202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syringe-injectable electronics.
    Liu J; Fu TM; Cheng Z; Hong G; Zhou T; Jin L; Duvvuri M; Jiang Z; Kruskal P; Xie C; Suo Z; Fang Y; Lieber CM
    Nat Nanotechnol; 2015 Jul; 10(7):629-636. PubMed ID: 26053995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-like Neural Probes for Understanding and Modulating the Brain.
    Hong G; Viveros RD; Zwang TJ; Yang X; Lieber CM
    Biochemistry; 2018 Jul; 57(27):3995-4004. PubMed ID: 29529359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesh electronics: a new paradigm for tissue-like brain probes.
    Hong G; Yang X; Zhou T; Lieber CM
    Curr Opin Neurobiol; 2018 Jun; 50():33-41. PubMed ID: 29202327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping.
    Lee JM; Lin D; Kim HR; Pyo YW; Hong G; Lieber CM; Park HG
    Nano Lett; 2021 Apr; 21(7):3184-3190. PubMed ID: 33734716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stitching Flexible Electronics into the Brain.
    Lee JM; Lin D; Pyo YW; Kim HR; Park HG; Lieber CM
    Adv Sci (Weinh); 2023 Jun; 10(16):e2300220. PubMed ID: 37127888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printable Transparent Conductive Films for Flexible Electronics.
    Li D; Lai WY; Zhang YZ; Huang W
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29319214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravure printing of graphene for large-area flexible electronics.
    Secor EB; Lim S; Zhang H; Frisbie CD; Francis LF; Hersam MC
    Adv Mater; 2014 Jul; 26(26):4533-8. PubMed ID: 24782064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics.
    Song D; Mahajan A; Secor EB; Hersam MC; Francis LF; Frisbie CD
    ACS Nano; 2017 Jul; 11(7):7431-7439. PubMed ID: 28686415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics.
    Yu H; Fang D; Dirican M; Wang R; Tian Y; Chen L; Liu H; Wang J; Tang F; Asiri AM; Zhang X; Tao J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20281-20290. PubMed ID: 31083900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Frontier of Printed Electronics: Flexible Hybrid Electronics.
    Khan Y; Thielens A; Muin S; Ting J; Baumbauer C; Arias AC
    Adv Mater; 2020 Apr; 32(15):e1905279. PubMed ID: 31742812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.