BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 26317341)

  • 41. Application of strategies for sanitation management in wastewater treatment plants in order to control/reduce greenhouse gas emissions.
    Préndez M; Lara-González S
    J Environ Manage; 2008 Sep; 88(4):658-64. PubMed ID: 17548144
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Blue carbon accounting as metrics to be taken into account towards the target of GHG emissions mitigation in fisheries.
    Entrena-Barbero E; Feijoo G; González-García S; Moreira MT
    Sci Total Environ; 2022 Nov; 847():157558. PubMed ID: 35901881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Greenhouse gas emissions from forestry operations: a life cycle assessment.
    Sonne E
    J Environ Qual; 2006; 35(4):1439-50. PubMed ID: 16825464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reducing greenhouse gas emissions for climate stabilization: framing regional options.
    Olabisi LS; Reich PB; Johnson KA; Kapuscinski AR; Su SH; Wilson EJ
    Environ Sci Technol; 2009 Mar; 43(6):1696-703. PubMed ID: 19368159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
    Guo Y; Tian J; Zang N; Gao Y; Chen L
    Environ Sci Technol; 2018 Jul; 52(14):7754-7762. PubMed ID: 29902379
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Field measurement of greenhouse gas emissions from biological treatment facilities of food waste in Republic of Korea.
    Jeong S; Moon S; Park J; Kim JY
    Waste Manag Res; 2019 May; 37(5):452-460. PubMed ID: 30565518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios.
    Campeau A; Del Giorgio PA
    Glob Chang Biol; 2014 Apr; 20(4):1075-88. PubMed ID: 24273093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of intensification of pastoral farming on greenhouse gas emissions in New Zealand.
    Pinares-Patino CS; Waghorn GC; Hegarty RS; Hoskin SO
    N Z Vet J; 2009 Oct; 57(5):252-61. PubMed ID: 19802038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Greenhouse gas emissions trends and drivers insights from the domestic aviation in Thailand.
    Champeecharoensuk A; Dhakal S; Chollacoop N; Phdungsilp A
    Heliyon; 2024 Jan; 10(2):e24206. PubMed ID: 38293375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.
    Dangal SRS; Tian H; Zhang B; Pan S; Lu C; Yang J
    Glob Chang Biol; 2017 Oct; 23(10):4147-4161. PubMed ID: 28370720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitigating climate change: the role of domestic livestock.
    Gill M; Smith P; Wilkinson JM
    Animal; 2010 Mar; 4(3):323-33. PubMed ID: 22443938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of aviation non-CO₂ combustion effects on the environmental feasibility of alternative jet fuels.
    Stratton RW; Wolfe PJ; Hileman JI
    Environ Sci Technol; 2011 Dec; 45(24):10736-43. PubMed ID: 22106939
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.
    Ma F; Sha A; Lin R; Huang Y; Wang C
    Int J Environ Res Public Health; 2016 Mar; 13(3):. PubMed ID: 27011196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.
    Brinck K; Poulsen TG; Skov H
    Waste Manag Res; 2011 Oct; 29(10 Suppl):13-9. PubMed ID: 21746759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany.
    Helftewes M; Flamme S; Nelles M
    Waste Manag Res; 2012 Apr; 30(4):421-31. PubMed ID: 22452957
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy-related GHG emissions balances: IPCC versus LCA.
    Cellura M; Cusenza MA; Longo S
    Sci Total Environ; 2018 Jul; 628-629():1328-1339. PubMed ID: 30045554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity.
    Montelongo-Reyes MM; Otazo-Sánchez EM; Romo-Gómez C; Gordillo-Martínez AJ; Galindo-Castillo E
    Sci Total Environ; 2015 Sep; 527-528():455-64. PubMed ID: 25981943
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale.
    Jiang T; Li G; Tang Q; Ma X; Wang G; Schuchardt F
    J Environ Sci (China); 2015 May; 31():124-32. PubMed ID: 25968266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Greenhouse gas emissions from beef cattle pen surfaces in North Dakota.
    Rahman S; Borhan MS; Swanson K
    Environ Technol; 2013; 34(9-12):1239-46. PubMed ID: 24191457
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of ethanol on vehicle energy efficiency and implications on ethanol life-cycle greenhouse gas analysis.
    Yan X; Inderwildi OR; King DA; Boies AM
    Environ Sci Technol; 2013 Jun; 47(11):5535-44. PubMed ID: 23627549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.