BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26317349)

  • 1. Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions.
    Hovick TJ; Dahlgren DK; Papeş M; Elmore RD; Pitman JC
    PLoS One; 2015; 10(8):e0137021. PubMed ID: 26317349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse.
    Hovick TJ; Allred BW; Elmore RD; Fuhlendorf SD; Hamilton RG; Breland A
    PLoS One; 2015; 10(9):e0137882. PubMed ID: 26394226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges in updating habitat suitability models: An example with the lesser prairie-chicken.
    Jarnevich CS; Belamaric PN; Fricke K; Houts M; Rossi L; Beauprez G; Cooper B; Martin R
    PLoS One; 2021; 16(9):e0256633. PubMed ID: 34543290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why did the chicken not cross the road? Anthropogenic development influences the movement of a grassland bird.
    Londe DW; Elmore RD; Davis CA; Hovick TJ; Fuhlendorf SD; Rutledge J
    Ecol Appl; 2022 Apr; 32(3):e2543. PubMed ID: 35080784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balancing energy development and conservation: a method utilizing species distribution models.
    Jarnevich CS; Laubhan MK
    Environ Manage; 2011 May; 47(5):926-36. PubMed ID: 21400221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broad-scale changes in lesser prairie-chicken habitat.
    Vhay MP; Haukos DA; Sullins DS; Rice MB
    PLoS One; 2024; 19(5):e0304452. PubMed ID: 38820510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.
    Johnson K; Neville TB; Neville P
    BMC Ecol; 2006 Dec; 6():18. PubMed ID: 17144922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pyric herbivory on prairie-chicken (Tympanuchus spp) habitat.
    Starns HD; Fuhlendorf SD; Elmore RD; Twidwell D; Thacker ET; Hovick TJ; Luttbeg B
    PLoS One; 2020; 15(6):e0234983. PubMed ID: 32574224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying habitat loss and modification from recent expansion of energy infrastructure in an isolated, peripheral greater sage-grouse population.
    Walker BL; Neubaum MA; Goforth SR; Flenner MM
    J Environ Manage; 2020 Feb; 255():109819. PubMed ID: 31756579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic evaluation of a proposed introduction: the case of the greater prairie chicken and the extinct heath hen.
    Palkovacs EP; Oppenheimer AJ; Gladyshev E; Toepfer JE; Amato G; Chase T; Caccone A
    Mol Ecol; 2004 Jul; 13(7):1759-69. PubMed ID: 15189201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability of lek collapse is lower inside sage-grouse Core Areas: Effectiveness of conservation policy for a landscape species.
    Spence ES; Beck JL; Gregory AJ
    PLoS One; 2017; 12(11):e0185885. PubMed ID: 29121066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands.
    McNew LB; Hunt LM; Gregory AJ; Wisely SM; Sandercock BK
    Conserv Biol; 2014 Aug; 28(4):1089-99. PubMed ID: 24628394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking spatial regimes as an early warning for a species of conservation concern.
    Roberts CP; Uden DR; Cady SM; Allred B; Fuhlendorf S; Jones MO; Maestas JD; Naugle D; Olsen AC; Smith J; Tack J; Twidwell D
    Ecol Appl; 2022 Jan; 32(1):e02480. PubMed ID: 34674399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lesser prairie-chicken dispersal after translocation: Implications for restoration and population connectivity.
    Berigan LA; Aulicky CSH; Teige EC; Sullins DS; Fricke KA; Reitz JH; Rossi LG; Schultz KA; Rice MB; Tanner E; Fuhlendorf SD; Haukos DA
    Ecol Evol; 2024 Feb; 14(2):e10871. PubMed ID: 38304269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses to land cover and grassland management vary across life-history stages for a grassland specialist.
    Hardy MA; Broadway MS; Pollentier CD; Radeloff VC; Riddle JD; Hull SD; Zuckerberg B
    Ecol Evol; 2020 Dec; 10(23):12777-12791. PubMed ID: 33304493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using an individual-based model to assess common biases in lek-based count data to estimate population trajectories of lesser prairie-chickens.
    Ross BE; Sullins DS; Haukos DA
    PLoS One; 2019; 14(5):e0217172. PubMed ID: 31100093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of Wyoming's Sage-Grouse Core Areas: Influences on Energy Development and Male Lek Attendance.
    Gamo RS; Beck JL
    Environ Manage; 2017 Feb; 59(2):189-203. PubMed ID: 27826693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoidance behavior by prairie grouse: implications for development of wind energy.
    Pruett CL; Patten MA; Wolfe DH
    Conserv Biol; 2009 Oct; 23(5):1253-9. PubMed ID: 19500121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-scale genetic structure among greater sage-grouse leks in central Nevada.
    Jahner JP; Gibson D; Weitzman CL; Blomberg EJ; Sedinger JS; Parchman TL
    BMC Evol Biol; 2016 Jun; 16(1):127. PubMed ID: 27301494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of electric power lines on the breeding ecology of greater sage-grouse.
    Kohl MT; Messmer TA; Crabb BA; Guttery MR; Dahlgren DK; Larsen RT; Frey SN; Liguori S; Baxter RJ
    PLoS One; 2019; 14(1):e0209968. PubMed ID: 30699130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.