BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26317392)

  • 1. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
    Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X
    PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
    Pulido-Tamayo S; Weytjens B; De Maeyer D; Marchal K
    Sci Rep; 2016 Nov; 6():36257. PubMed ID: 27808240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An exact algorithm for finding cancer driver somatic genome alterations: the weighted mutually exclusive maximum set cover problem.
    Lu S; Mandava G; Yan G; Lu X
    Algorithms Mol Biol; 2016; 11():11. PubMed ID: 27148394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient algorithms to discover alterations with complementary functional association in cancer.
    Sarto Basso R; Hochbaum DS; Vandin F
    PLoS Comput Biol; 2019 May; 15(5):e1006802. PubMed ID: 31120875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions.
    Dao P; Kim YA; Wojtowicz D; Madan S; Sharan R; Przytycka TM
    PLoS Comput Biol; 2017 Oct; 13(10):e1005695. PubMed ID: 29023534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous identification of multiple driver pathways in cancer.
    Leiserson MD; Blokh D; Sharan R; Raphael BJ
    PLoS Comput Biol; 2013; 9(5):e1003054. PubMed ID: 23717195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations.
    Babur Ö; Gönen M; Aksoy BA; Schultz N; Ciriello G; Sander C; Demir E
    Genome Biol; 2015 Feb; 16(1):45. PubMed ID: 25887147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying mutual exclusivity across cancer genomes: computational approaches to discover genetic interaction and reveal tumor vulnerability.
    Deng Y; Luo S; Deng C; Luo T; Yin W; Zhang H; Zhang Y; Zhang X; Lan Y; Ping Y; Xiao Y; Li X
    Brief Bioinform; 2019 Jan; 20(1):254-266. PubMed ID: 28968730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of driver pathways in cancer based on combinatorial patterns of somatic gene mutations.
    Li HT; Zhang J; Xia J; Zheng CH
    Neoplasma; 2016; 63(1):57-63. PubMed ID: 26639234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A forward selection algorithm to identify mutually exclusive alterations in cancer studies.
    Zhang Z; Yang Y; Zhou Y; Fang H; Yuan M; Sasser K; Hamadeh H; Xu XS
    J Hum Genet; 2021 May; 66(5):509-518. PubMed ID: 33177701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying mutated driver pathways in cancer by integrating multi-omics data.
    Wu J; Cai Q; Wang J; Liao Y
    Comput Biol Chem; 2019 Jun; 80():159-167. PubMed ID: 30959272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Mutually Exclusive Gene Sets with Prognostic Value and Novel Potential Driver Genes in Patients with Glioblastoma.
    Gao Q; Cui Y; Shen Y; Li Y; Gao X; Xi Y; Wang T
    Biomed Res Int; 2019; 2019():4860367. PubMed ID: 31815141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual exclusivity analysis identifies oncogenic network modules.
    Ciriello G; Cerami E; Sander C; Schultz N
    Genome Res; 2012 Feb; 22(2):398-406. PubMed ID: 21908773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using MEMo to discover mutual exclusivity modules in cancer.
    Ciriello G; Cerami E; Aksoy BA; Sander C; Schultz N
    Curr Protoc Bioinformatics; 2013 Mar; Chapter 8():8.17.1-8.17.12. PubMed ID: 23504936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.