BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26317829)

  • 21. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Red blood cell phase separation in symmetric and asymmetric microchannel networks: effect of capillary dilation and inflow velocity.
    Clavica F; Homsy A; Jeandupeux L; Obrist D
    Sci Rep; 2016 Nov; 6():36763. PubMed ID: 27857165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicted wall shear rate gradients in T-type arteriolar bifurcations.
    Noren D; Palmer HJ; Frame MD
    Biorheology; 2000; 37(5-6):325-40. PubMed ID: 11204540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Outflow boundary conditions for arterial networks with multiple outlets.
    Grinberg L; Karniadakis GE
    Ann Biomed Eng; 2008 Sep; 36(9):1496-514. PubMed ID: 18612828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasma skimming in vascular trees: numerical estimates of symmetry recovery lengths.
    Carr RT; Xiao J
    Microcirculation; 1995 Dec; 2(4):345-53. PubMed ID: 8714815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study.
    Li X; Popel AS; Karniadakis GE
    Phys Biol; 2012 Apr; 9(2):026010. PubMed ID: 22476709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A streak length-based method for quantifying red blood cell flow in skeletal muscle arteriolar networks.
    Goldman D; Farid Z; Jackson DN
    Microcirculation; 2019 Jul; 26(5):e12532. PubMed ID: 30681226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ratio of cells and plasma in blood flowing past branches in small plastic channels.
    Dellimore JW; Dunlop MJ; Canham PB
    Am J Physiol; 1983 May; 244(5):H635-43. PubMed ID: 6846550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms.
    Kiani MF; Pries AR; Hsu LL; Sarelius IH; Cokelet GR
    Am J Physiol; 1994 May; 266(5 Pt 2):H1822-8. PubMed ID: 8203581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasma skimming in serial microvascular bifurcations.
    Carr RT; Wickham LL
    Microvasc Res; 1990 Sep; 40(2):179-90. PubMed ID: 2250597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Various issues relating to computational fluid dynamics simulations of carotid bifurcation flow based on models reconstructed from three-dimensional ultrasound images.
    Augst AD; Barratt DC; Hughes AD; Thom SA; Xu XY
    Proc Inst Mech Eng H; 2003; 217(5):393-403. PubMed ID: 14558652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects.
    Xiong W; Zhang J
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):575-83. PubMed ID: 21744014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemodynamic evaluation of embolic trajectory in an arterial bifurcation: an in-vitro experimental model.
    Bushi D; Grad Y; Einav S; Yodfat O; Nishri B; Tanne D
    Stroke; 2005 Dec; 36(12):2696-700. PubMed ID: 16269629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Red blood cell flow in the cardiovascular system: a fluid dynamics perspective.
    AlMomani TD; Vigmostad SC; Chivukula VK; Al-zube L; Smadi O; BaniHani S
    Crit Rev Biomed Eng; 2012; 40(5):427-40. PubMed ID: 23339650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.