BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26318315)

  • 1. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study.
    Hickey M; Phillips JP; Kyriacou PA
    J Clin Monit Comput; 2016 Oct; 30(5):727-36. PubMed ID: 26318315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic noninvasive measurement of systolic blood pressure using photoplethysmography.
    Nitzan M; Patron A; Glik Z; Weiss AT
    Biomed Eng Online; 2009 Oct; 8():28. PubMed ID: 19857254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of phase distortions of the photoplethysmographic signal in digital IIR filtering.
    Lapitan DG; Rogatkin DA; Molchanova EA; Tarasov AP
    Sci Rep; 2024 Mar; 14(1):6546. PubMed ID: 38503856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of transmural pressure on the estimation of arterial stiffness index from the photoplethysmographic waveform.
    Pilt K; Reiu A
    Med Biol Eng Comput; 2024 Apr; 62(4):1049-1059. PubMed ID: 38123887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds.
    Nitzan M; Adar Y; Hoffman E; Shalom E; Engelberg S; Ben-Dov IZ; Bursztyn M
    Sensors (Basel); 2013 Oct; 13(11):14797-812. PubMed ID: 24184918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological features of the photoplethysmographic signal: a new approach to characterize the microcirculatory response to photobiomodulation.
    Ovadia-Blechman Z; Hauptman Y; Rabin N; Wiezman G; Hoffer O; Gertz SD; Gavish B; Gavish L
    Front Physiol; 2023; 14():1175470. PubMed ID: 37817983
    [No Abstract]   [Full Text] [Related]  

  • 7. Insights into vascular physiology from sleep photoplethysmography.
    Yilmaz G; Ong JL; Ling LH; Chee MWL
    Sleep; 2023 Oct; 46(10):. PubMed ID: 37379483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Vascular Depth-Dependent Changes in Multi-Wavelength PPG Signals Due to Contact Force.
    Lambert Cause J; Solé Morillo Á; da Silva B; García-Naranjo JC; Stiens J
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the impact of smoking habits through photoplethysmography analysis.
    Qananwah Q; Khader A; Al-Hashem M; Mumani A; Dagamseh A
    Physiol Meas; 2024 Jan; 45(1):. PubMed ID: 38176078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of stress-induced sympathetic nervous activity using multi-wavelength PPG.
    Udhayakumar R; Rahman S; Buxi D; Macefield VG; Dawood T; Mellor N; Karmakar C
    R Soc Open Sci; 2023 Aug; 10(8):221382. PubMed ID: 37650068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab Photoplethysmography.
    Supelnic MN; Ferreira AF; Bota PJ; Brás-Rosário L; Plácido da Silva H
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency domain analysis of photoplethysmographic and arterial pressure waveforms for assessing hemodynamics in children with congenital heart surgery.
    Jang HY; Song IK; Kim SH; Shin WJ
    Korean J Anesthesiol; 2024 Apr; 77(2):205-216. PubMed ID: 38204171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency component of photoplethysmogram reflects the autonomic control of blood pressure.
    Karavaev AS; Borovik AS; Borovkova EI; Orlova EA; Simonyan MA; Ponomarenko VI; Skazkina VV; Gridnev VI; Bezruchko BP; Prokhorov MD; Kiselev AR
    Biophys J; 2021 Jul; 120(13):2657-2664. PubMed ID: 34087217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive assessment of sublingual microcirculation using flow derived from green light PPG: evaluation and reference values.
    Acevedo RU; Sánchez LO; Londoño SV; Mejía-Mejía E; Villa RT; Goez YM
    J Biomed Opt; 2024 Jan; 29(1):017001. PubMed ID: 38188965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical Artificial Arterial Pulse System for Development and Testing of PPG-Based Sensors.
    Hill JF; Dixon JA; Chase JG; Pretty CG
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Polydimethylsiloxane (PDMS) Pulsatile Vascular Tissue Phantoms for the In-Vitro Investigation of Light Tissue Interaction in Photoplethysmography.
    Nomoni M; May JM; Kyriacou PA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COVID-19-Induced Changes in Photoplethysmography.
    Peck J; Wishon MJ; Wittels H; Hasty F; Hendricks S; Lee SJ; Wittels SH
    Mil Med; 2023 Jul; 188(7-8):e2661-e2669. PubMed ID: 36852874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arterial stiffness assessment using PPG feature extraction and significance testing in an in vitro cardiovascular system.
    Ferizoli R; Karimpour P; May JM; Kyriacou PA
    Sci Rep; 2024 Jan; 14(1):2024. PubMed ID: 38263412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Customisable Silicone Vessels and Tissue Phantoms for In Vitro Photoplethysmography Investigations into Cardiovascular Disease.
    Karimpour P; Ferizoli R; May JM; Kyriacou PA
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmography for the Assessment of Arterial Stiffness.
    Karimpour P; May JM; Kyriacou PA
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.