BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26318491)

  • 1. Differential participation of pyramidal cells in generation of spontaneous sharp wave-ripples in the mouse subiculum in vitro.
    Maslarova A; Lippmann K; Salar S; Rösler A; Heinemann U
    Neurobiol Learn Mem; 2015 Nov; 125():113-9. PubMed ID: 26318491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Status epilepticus induces chronic silencing of burster and dominance of regular firing neurons during sharp wave-ripples in the mouse subiculum.
    Lippmann K; Klaft ZJ; Salar S; Hollnagel JO; Valero M; Maslarova A
    Neurobiol Dis; 2022 Dec; 175():105929. PubMed ID: 36410634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
    Staff NP; Jung HY; Thiagarajan T; Yao M; Spruston N
    J Neurophysiol; 2000 Nov; 84(5):2398-408. PubMed ID: 11067982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Diversity of Subicular Principal Cells during Hippocampal Ripples.
    Böhm C; Peng Y; Maier N; Winterer J; Poulet JF; Geiger JR; Schmitz D
    J Neurosci; 2015 Oct; 35(40):13608-18. PubMed ID: 26446215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
    Kim Y; Spruston N
    Hippocampus; 2012 Apr; 22(4):693-706. PubMed ID: 21538658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes.
    Papatheodoropoulos C
    Neuroscience; 2008 Dec; 157(3):495-501. PubMed ID: 18938226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal sharp waves and ripples: Effects of aging and modulation by NMDA receptors and L-type Ca2+ channels.
    Kouvaros S; Kotzadimitriou D; Papatheodoropoulos C
    Neuroscience; 2015 Jul; 298():26-41. PubMed ID: 25869622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal Maturation of Membrane Potential Dynamics during
    Noguchi A; Matsumoto N; Ikegaya Y
    J Neurosci; 2023 Aug; 43(35):6126-6140. PubMed ID: 37400254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous rhythmic field potentials of isolated mouse hippocampal-subicular-entorhinal cortices in vitro.
    Wu CP; Huang HL; Asl MN; He JW; Gillis J; Skinner FK; Zhang L
    J Physiol; 2006 Oct; 576(Pt 2):457-76. PubMed ID: 16887877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions, analyzed by a cortical-CA3-CA1 network model.
    Taxidis J; Mizuseki K; Mason R; Owen MR
    Front Comput Neurosci; 2013; 7():3. PubMed ID: 23386827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.
    Hofer KT; Kandrács Á; Ulbert I; Pál I; Szabó C; Héja L; Wittner L
    Hippocampus; 2015 Feb; 25(2):169-86. PubMed ID: 25209976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α5GABAA receptors regulate hippocampal sharp wave-ripple activity in vitro.
    Papatheodoropoulos C; Koniaris E
    Neuropharmacology; 2011 Mar; 60(4):662-73. PubMed ID: 21146551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disrupted hippocampal sharp-wave ripple-associated spike dynamics in a transgenic mouse model of dementia.
    Witton J; Staniaszek LE; Bartsch U; Randall AD; Jones MW; Brown JT
    J Physiol; 2016 Aug; 594(16):4615-30. PubMed ID: 25480798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subiculum as a generator of sharp wave-ripples in the rodent hippocampus.
    Imbrosci B; Nitzan N; McKenzie S; Donoso JR; Swaminathan A; Böhm C; Maier N; Schmitz D
    Cell Rep; 2021 Apr; 35(3):109021. PubMed ID: 33882307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological sharp wave-ripples and interictal events in vitro: what's the difference?
    Karlócai MR; Kohus Z; Káli S; Ulbert I; Szabó G; Máté Z; Freund TF; Gulyás AI
    Brain; 2014 Feb; 137(Pt 2):463-85. PubMed ID: 24390441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of sharp wave initiation and ripple generation.
    Schlingloff D; Káli S; Freund TF; Hájos N; Gulyás AI
    J Neurosci; 2014 Aug; 34(34):11385-98. PubMed ID: 25143618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Sharp Wave-Ripple Events by Disinhibition.
    Evangelista R; Cano G; Cooper C; Schmitz D; Maier N; Kempter R
    J Neurosci; 2020 Oct; 40(41):7811-7836. PubMed ID: 32913107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation and inhibition compete to control spiking during hippocampal ripples: intracellular study in behaving mice.
    English DF; Peyrache A; Stark E; Roux L; Vallentin D; Long MA; Buzsáki G
    J Neurosci; 2014 Dec; 34(49):16509-17. PubMed ID: 25471587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-Loop Interruption of Hippocampal Ripples through Fornix Stimulation in the Non-Human Primate.
    Talakoub O; Gomez Palacio Schjetnan A; Valiante TA; Popovic MR; Hoffman KL
    Brain Stimul; 2016; 9(6):911-918. PubMed ID: 27576185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.