BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26318650)

  • 1. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis.
    Zhang Y; Angelidaki I
    Water Res; 2015 Nov; 85():177-84. PubMed ID: 26318650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.
    Zhang Y; Angelidaki I
    Water Res; 2015 Sep; 81():188-95. PubMed ID: 26057718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor.
    Wu X; Modin O
    Bioresour Technol; 2013 Oct; 146():530-536. PubMed ID: 23973971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter.
    Daguerre-Martini S; Vanotti MB; Rodriguez-Pastor M; Rosal A; Moral R
    Water Res; 2018 Jun; 137():201-210. PubMed ID: 29550723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous high-purity bioelectrochemical nitrogen recovery from high N-loaded wastewaters.
    Ul Z; Sulonen M; Baeza JA; Guisasola A
    Bioelectrochemistry; 2024 Aug; 158():108707. PubMed ID: 38653107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.
    Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C
    Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model of a parallel plate ammonia electrolyzer for combined wastewater remediation and hydrogen production.
    Estejab A; Daramola DA; Botte GG
    Water Res; 2015 Jun; 77():133-145. PubMed ID: 25864004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic sulfur recovery from sulfate-laden antibiotic production wastewater using a single-chamber up-flow bioelectrochemical reactor.
    Tang L; Huang J; Zhuang C; Yang X; Sun L; Lu H
    Water Res; 2024 Jun; 256():121590. PubMed ID: 38631241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems.
    Tice RC; Kim Y
    Water Res; 2014 Nov; 64():61-72. PubMed ID: 25046373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics of sulfate reduction-ammonia oxidation reaction].
    Yuan Y; Huang Y; Li X; Zhang CL; Zhang L; Pan Y; Liu FX
    Huan Jing Ke Xue; 2013 Nov; 34(11):4362-9. PubMed ID: 24455946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Characterization of biocatalysed sulfate reduction in a cathode of microbial electrolysis system].
    Fu SY; Liu GL; Luo HP; Zhang RD; Zhang YY
    Huan Jing Ke Xue; 2014 Feb; 35(2):626-32. PubMed ID: 24812957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of ammonia from swine manure using gas-permeable membranes: effect of waste strength and pH.
    Garcia-González MC; Vanotti MB
    Waste Manag; 2015 Apr; 38():455-61. PubMed ID: 25687948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically driven extraction and recovery of ammonia from human urine.
    Luther AK; Desloover J; Fennell DE; Rabaey K
    Water Res; 2015 Dec; 87():367-77. PubMed ID: 26453942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiently "pumping out" value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives.
    Zou S; He Z
    Water Res; 2018 Mar; 131():62-73. PubMed ID: 29274548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode.
    Xu Y; Jiang Y; Chen Y; Zhu S; Shen S
    Water Environ Res; 2014 Jul; 86(7):649-53. PubMed ID: 25112032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach for enhancing nitrogen and hydrogen recovery from urine in microbial electrochemical gas-permeable membrane system.
    Yuan X; Feng Y; Han C; Jiang Z; Li Y; Liu J
    Sci Total Environ; 2023 Apr; 867():161446. PubMed ID: 36621490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion.
    Desloover J; Woldeyohannis AA; Verstraete W; Boon N; Rabaey K
    Environ Sci Technol; 2012 Nov; 46(21):12209-16. PubMed ID: 23050591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.
    Lin H; Wu X; Nelson C; Miller C; Zhu J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(3):240-50. PubMed ID: 26654000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.
    Camarillo MK; Stringfellow WT; Spier CL; Hanlon JS; Domen JK
    J Environ Manage; 2013 Oct; 128():233-42. PubMed ID: 23747374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.