BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26319004)

  • 1. Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing.
    Henry KA; Tanha J; Hussack G
    Protein Eng Des Sel; 2015 Oct; 28(10):379-83. PubMed ID: 26319004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of TGF-β-neutralizing single-domain antibodies of predetermined epitope specificity using next-generation DNA sequencing.
    Henry KA; Hussack G; Collins C; Zwaagstra JC; Tanha J; MacKenzie CR
    Protein Eng Des Sel; 2016 Oct; 29(10):439-443. PubMed ID: 27613412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum immunoglobulin or albumin binding single-domain antibodies that enable tailored half-life extension of biologics in multiple animal species.
    Harmsen MM; Ackerschott B; de Smit H
    Front Immunol; 2024; 15():1346328. PubMed ID: 38352869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-Generation DNA Sequencing of V
    Henry KA
    Methods Mol Biol; 2018; 1701():425-446. PubMed ID: 29116520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Affinity Maturation of Single-Domain Antibodies Using Next-Generation DNA Sequencing.
    Lowden MJ; van Faassen H; Raphael S; Ryan S; Hussack G; Henry KA
    Methods Mol Biol; 2022; 2446():245-268. PubMed ID: 35157277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of High-Throughput DNA Sequencing to Single-Domain Antibody Discovery and Engineering.
    Lowden MJ; Lei EK; Hussack G; Henry KA
    Methods Mol Biol; 2023; 2702():489-540. PubMed ID: 37679637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxford nanopore sequencing enables rapid discovery of single-domain antibodies from phage display libraries.
    Lowden MJ; Henry KA
    Biotechniques; 2018 Dec; 65(6):351-356. PubMed ID: 30477332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development, High-Throughput Profiling, and Biopanning of a Large Phage Display Single-Domain Antibody Library.
    Lee HE; Cho AH; Hwang JH; Kim JW; Yang HR; Ryu T; Jung Y; Lee S
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Albumin-binding domain from Streptococcus zooepidemicus protein Zag as a novel strategy to improve the half-life of therapeutic proteins.
    Cantante C; Lourenço S; Morais M; Leandro J; Gano L; Silva N; Leandro P; Serrano M; Henriques AO; Andre A; Cunha-Santos C; Fontes C; Correia JDG; Aires-da-Silva F; Goncalves J
    J Biotechnol; 2017 Jul; 253():23-33. PubMed ID: 28549690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of phage-displayed synthetic human single-domain antibody libraries: A retrospective analysis.
    Henry KA; Tanha J
    J Immunol Methods; 2018 May; 456():81-86. PubMed ID: 29462605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates.
    Turner KB; Naciri J; Liu JL; Anderson GP; Goldman ER; Zabetakis D
    PLoS One; 2016; 11(2):e0149393. PubMed ID: 26895405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands.
    Alturki NA; Henry KA; MacKenzie CR; Arbabi-Ghahroudi M
    Methods Mol Biol; 2015; 1348():167-89. PubMed ID: 26424272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivalent display of single-domain antibodies.
    Zhang J; Mackenzie CR
    Methods Mol Biol; 2012; 911():445-56. PubMed ID: 22886268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection, characterization, and CDR shuffling of naive llama single-domain antibodies selected against auxin and their cross-reactivity with auxinic herbicides from four chemical families.
    Sheedy C; Yau KY; Hirama T; MacKenzie CR; Hall JC
    J Agric Food Chem; 2006 May; 54(10):3668-78. PubMed ID: 19127743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Affinity Tag, ABTAG, and Its Application to the Affinity Screening of Single-Domain Antibodies Selected by Phage Display.
    Hussack G; Baral TN; Baardsnes J; van Faassen H; Raphael S; Henry KA; Zhang J; MacKenzie CR
    Front Immunol; 2017; 8():1406. PubMed ID: 29163485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodistribution of a (67)Ga-labeled anti-TNF VHH single-domain antibody containing a bacterial albumin-binding domain (Zag).
    Morais M; Cantante C; Gano L; Santos I; Lourenço S; Santos C; Fontes C; Aires da Silva F; Gonçalves J; Correia JD
    Nucl Med Biol; 2014 May; 41 Suppl():e44-8. PubMed ID: 24530366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel nanobody against urease activity of Helicobacter pylori.
    Ardekani LS; Gargari SL; Rasooli I; Bazl MR; Mohammadi M; Ebrahimizadeh W; Bakherad H; Zare H
    Int J Infect Dis; 2013 Sep; 17(9):e723-8. PubMed ID: 23561799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of llama single-domain antibodies against methotrexate, a prototypical hapten.
    Alvarez-Rueda N; Behar G; Ferré V; Pugnière M; Roquet F; Gastinel L; Jacquot C; Aubry J; Baty D; Barbet J; Birklé S
    Mol Immunol; 2007 Mar; 44(7):1680-90. PubMed ID: 17011035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life.
    Kang HJ; Kim HJ; Cha SH
    Immunol Lett; 2016 Jan; 169():33-40. PubMed ID: 26593745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library.
    Xu Y; Xiong L; Li Y; Xiong Y; Tu Z; Fu J; Chen B
    Anal Bioanal Chem; 2015 Jul; 407(18):5333-41. PubMed ID: 25910884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.