These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 26319006)

  • 1. Assessing abdominal aorta narrowing using computational fluid dynamics.
    Al-Rawi M; Al-Jumaily AM
    Med Biol Eng Comput; 2016 May; 54(5):843-53. PubMed ID: 26319006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive diagnostics of blockage growth in the descending aorta-computational approach.
    Al-Rawi M; Al-Jumaily AM; Belkacemi D
    Med Biol Eng Comput; 2022 Nov; 60(11):3265-3279. PubMed ID: 36166139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm.
    Das A; Paul A; Taylor MD; Banerjee RK
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S18. PubMed ID: 25603022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional arterial stress-strain distributions referenced to the zero-stress state in the rat.
    Zhao J; Day J; Yuan ZF; Gregersen H
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H622-9. PubMed ID: 11788411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of high and low shear stress on vascular remodeling and endothelial vascular cell adhesion molecular-1 expression in mouse abdominal aorta].
    Liu J; Liu Y; Bin BY; Li MY; Huang RZ; Wu WL; Yuan Y; Bin JP
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Aug; 31(8):1349-52. PubMed ID: 21868321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational model to predict aortic wall stresses in patients with systolic arterial hypertension.
    Giannakoulas G; Giannoglou G; Soulis J; Farmakis T; Papadopoulou S; Parcharidis G; Louridas G
    Med Hypotheses; 2005; 65(6):1191-5. PubMed ID: 16107302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties.
    Bund SJ
    Clin Sci (Lond); 2001 Oct; 101(4):385-93. PubMed ID: 11566076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is aortic wall shear stress affected by aging? An image-based numerical study with two age groups.
    Lantz J; Renner J; Länne T; Karlsson M
    Med Eng Phys; 2015 Mar; 37(3):265-71. PubMed ID: 25630809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of computational fluid dynamics in hemodynamic research of aortic arch].
    Zhang T; Xiong J; Hu XZ; Jia X; Luan SL; Guo W
    Zhonghua Yi Xue Za Zhi; 2013 Jan; 93(5):380-4. PubMed ID: 23660214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biomechanical properties of arteries in experimental hypotensive rats].
    Jiang Z; Li H; Liu B; Teng Z; Qing K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):381-4. PubMed ID: 11605494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pathophysiological prerequisites in the diagnosis and treatment of arterial occlusive diseases (author's transl)].
    Benner KU
    MMW Munch Med Wochenschr; 1978 Jan; 120(1):9-14. PubMed ID: 414112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An invasive but simple and accurate method for ascending aorta-femoral artery pulse wave velocity measurement.
    Kilic H; Yelgec S; Salih O; Akdemir R; Karakurt O; Cagirci G; Yeter E; Acikel S; Dogan M; Arslantas U; Baha RM
    Blood Press; 2013 Feb; 22(1):45-50. PubMed ID: 22747433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of blood flow patterns in human arteries.
    Xu XY; Long Q; Collins MW; Bourne M; Griffith TM
    Proc Inst Mech Eng H; 1999; 213(5):411-21. PubMed ID: 10581968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of arterial blood flow on walls of the abdominal aorta: distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging.
    Sughimoto K; Shimamura Y; Tezuka C; Tsubota K; Liu H; Okumura K; Masuda Y; Haneishi H
    Heart Vessels; 2016 Jul; 31(7):1168-75. PubMed ID: 26481791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-specific aortic wall shear stress estimations using semi-automatic segmentation.
    Renner J; Nadali Najafabadi H; Modin D; Länne T; Karlsson M
    Clin Physiol Funct Imaging; 2012 Nov; 32(6):481-91. PubMed ID: 23031070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large eddy simulation of a stenosed artery using a femoral artery pulsatile flow profile.
    Barber TJ; Simmons A
    Artif Organs; 2011 Jul; 35(7):E155-60. PubMed ID: 21658078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.