These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 26319272)
1. A Context-Aware Application to Increase Elderly Users Compliance with Physical Rehabilitation Exercises at Home via Animatronic Biofeedback. Gamecho B; Silva H; Guerreiro J; Gardeazabal L; Abascal J J Med Syst; 2015 Nov; 39(11):135. PubMed ID: 26319272 [TBL] [Abstract][Full Text] [Related]
2. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee. Bell KM; Onyeukwu C; McClincy MP; Allen M; Bechard L; Mukherjee A; Hartman RA; Smith C; Lynch AD; Irrgang JJ Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823373 [TBL] [Abstract][Full Text] [Related]
3. Rehab@home: a tool for home-based motor function rehabilitation. Faria C; Silva J; Campilho A Disabil Rehabil Assist Technol; 2015 Jan; 10(1):67-74. PubMed ID: 24070452 [TBL] [Abstract][Full Text] [Related]
4. Interaction with a Hand Rehabilitation Exoskeleton in EMG-Driven Bilateral Therapy: Influence of Visual Biofeedback on the Users' Performance. Cisnal A; Gordaliza P; Pérez Turiel J; Fraile JC Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850650 [TBL] [Abstract][Full Text] [Related]
5. Increasing patient engagement during virtual reality-based motor rehabilitation. Zimmerli L; Jacky M; Lünenburger L; Riener R; Bolliger M Arch Phys Med Rehabil; 2013 Sep; 94(9):1737-46. PubMed ID: 23500181 [TBL] [Abstract][Full Text] [Related]
6. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities. Li C; Rusák Z; Horváth I; Ji L Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845 [TBL] [Abstract][Full Text] [Related]
7. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221 [TBL] [Abstract][Full Text] [Related]
8. Assessment of Haptic Interaction for Home-Based Physical Tele-Therapy using Wearable Devices and Depth Sensors. Barmpoutis A; Alzate J; Beekhuizen S; Delgado H; Donaldson P; Hall A; Lago C; Vidal K; Fox EJ Stud Health Technol Inform; 2016; 220():33-8. PubMed ID: 27046550 [TBL] [Abstract][Full Text] [Related]
10. MOPET: a context-aware and user-adaptive wearable system for fitness training. Buttussi F; Chittaro L Artif Intell Med; 2008 Feb; 42(2):153-63. PubMed ID: 18234481 [TBL] [Abstract][Full Text] [Related]
11. Low-cost monitoring of patients during unsupervised robot/computer assisted motivating stroke rehabilitation. Johnson MJ; Shakya Y; Strachota E; Ahamed SI Biomed Tech (Berl); 2011 Feb; 56(1):5-9. PubMed ID: 21117891 [TBL] [Abstract][Full Text] [Related]
12. A prototype home robot with an ambient facial interface to improve drug compliance. Takacs B; Hanak D J Telemed Telecare; 2008; 14(7):393-5. PubMed ID: 18852325 [TBL] [Abstract][Full Text] [Related]
13. MirrARbilitation: A clinically-related gesture recognition interactive tool for an AR rehabilitation system. Da Gama AE; Chaves TM; Figueiredo LS; Baltar A; Meng M; Navab N; Teichrieb V; Fallavollita P Comput Methods Programs Biomed; 2016 Oct; 135():105-14. PubMed ID: 27586484 [TBL] [Abstract][Full Text] [Related]
14. A learning-based agent for home neurorehabilitation. Lydakis A; Meng Y; Munroe C; Wu YN; Begum M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1233-1238. PubMed ID: 28813990 [TBL] [Abstract][Full Text] [Related]
15. Exercise gaming - a motivational approach for older adults with vestibular dysfunction. Smaerup M; Grönvall E; Larsen SB; Laessoe U; Henriksen JJ; Damsgaard EM Disabil Rehabil Assist Technol; 2017 Feb; 12(2):137-144. PubMed ID: 26727034 [TBL] [Abstract][Full Text] [Related]
16. SQUID: sensorized shirt with smartphone interface for exercise monitoring and home rehabilitation. Farjadian AB; Sivak ML; Mavroidis C IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650451. PubMed ID: 24187268 [TBL] [Abstract][Full Text] [Related]
17. A Framework for User Adaptation and Profiling for Social Robotics in Rehabilitation. Martín A; Pulido JC; González JC; García-Olaya Á; Suárez C Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854446 [TBL] [Abstract][Full Text] [Related]
18. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498 [TBL] [Abstract][Full Text] [Related]
19. The Role of Social Interactions in Motor Performance: Feasibility Study Toward Enhanced Motivation in Telerehabilitation. Barak Ventura R; Nakayama S; Raghavan P; Nov O; Porfiri M J Med Internet Res; 2019 May; 21(5):e12708. PubMed ID: 31094338 [TBL] [Abstract][Full Text] [Related]
20. Caregiver and social assistant robot for rehabilitation and coaching for the elderly. Pérez PJ; Garcia-Zapirain B; Mendez-Zorrilla A Technol Health Care; 2015; 23(3):351-7. PubMed ID: 25669209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]