These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26319278)

  • 1. Development of multi-frequency ESR system for high-pressure measurements up to 2.5 GPa.
    Sakurai T; Fujimoto K; Matsui R; Kawasaki K; Okubo S; Ohta H; Matsubayashi K; Uwatoko Y; Tanaka H
    J Magn Reson; 2015 Oct; 259():108-13. PubMed ID: 26319278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of high-pressure, high-field and multifrequency electron spin resonance system.
    Sakurai T; Taketani A; Tomita T; Okubo S; Ohta H; Uwatoko Y
    Rev Sci Instrum; 2007 Jun; 78(6):065107. PubMed ID: 17614638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of high-pressure and high-field ESR system using SQUID magnetometer.
    Sakurai T; Fujimoto K; Goto R; Okubo S; Ohta H; Uwatoko Y
    J Magn Reson; 2012 Oct; 223():41-5. PubMed ID: 22967886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and application of 2.5 GPa-25 T high-pressure high-field electron spin resonance system using a cryogen-free superconducting magnet.
    Sakurai T; Kimura S; Kimata M; Nojiri H; Awaji S; Okubo S; Ohta H; Uwatoko Y; Kudo K; Koike Y
    J Magn Reson; 2018 Nov; 296():1-4. PubMed ID: 30165264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency Extension to the THz Range in the High Pressure ESR System and Its Application to the Shastry-Sutherland Model Compound SrCu2(BO3)2.
    Ohta H; Sakurai T; Matsui R; Kawasaki K; Hirao Y; Okubo S; Matsubayashi K; Uwatoko Y; Kudo K; Koike Y
    J Phys Chem B; 2015 Oct; 119(43):13755-61. PubMed ID: 26010675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave far-infrared ESR spectrometer for high-pressure measurements.
    Náfrádi B; Gaál R; Sienkiewicz A; Fehér T; Forró L
    J Magn Reson; 2008 Dec; 195(2):206-10. PubMed ID: 18835205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating a high temperature environment at high pressure in a gas piston cylinder apparatus.
    Burnley PC; Getting IC
    Rev Sci Instrum; 2012 Jan; 83(1):014501. PubMed ID: 22299971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic detection of high-resolution electron spin resonance using a microcantilever in the millimeter-wave region up to 240 GHz.
    Ohmichi E; Mizuno N; Kimata M; Ohta H
    Rev Sci Instrum; 2008 Oct; 79(10):103903. PubMed ID: 19044725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and efficiency evaluation of a hybrid NiCrAl pressure cell up to 4 GPa.
    Fujiwara N; Matsumoto T; Koyama-Nakazawa K; Hisada A; Uwatoko Y
    Rev Sci Instrum; 2007 Jul; 78(7):073905. PubMed ID: 17672771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer.
    Giriat G; Wang W; Attfield JP; Huxley AD; Kamenev KV
    Rev Sci Instrum; 2010 Jul; 81(7):073905. PubMed ID: 20687740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonmagnetic high pressure cell for magnetic remanence measurements up to 1.5 GPa in a superconducting quantum interference device magnetometer.
    Sadykov RA; Bezaeva NS; Kharkovskiy AI; Rochette P; Gattacceca J; Trukhin VI
    Rev Sci Instrum; 2008 Nov; 79(11):115102. PubMed ID: 19045908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer.
    Tateiwa N; Haga Y; Fisk Z; Ōnuki Y
    Rev Sci Instrum; 2011 May; 82(5):053906. PubMed ID: 21639517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonmagnetic indenter-type high-pressure cell for magnetic measurements.
    Kobayashi TC; Hidaka H; Kotegawa H; Fujiwara K; Eremets MI
    Rev Sci Instrum; 2007 Feb; 78(2):023909. PubMed ID: 17578125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-angle-dependent multi-frequency electron spin resonance spectroscopy in submillimeter wave range based on thermal detection.
    Takahashi H; Sakurai T; Ohmichi E; Ohta H
    Rev Sci Instrum; 2021 Aug; 92(8):083901. PubMed ID: 34470425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and evaluation via nuclear quadrupole resonance of a palm cubic-anvil pressure cell.
    Nakagawa S; Gochi J; Kuwayama T; Nagasaki S; Takahashi T; Cheng J; Uwatoko Y; Fujiwara N
    Rev Sci Instrum; 2020 Jul; 91(7):073907. PubMed ID: 32752836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency electron spin resonance system using a microcantilever and a pulsed magnetic field.
    Ohmichi E; Mizuno N; Kimata M; Ohta H; Osada T
    Rev Sci Instrum; 2009 Jan; 80(1):013904. PubMed ID: 19191444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single-component molecular superconductor.
    Cui H; Kobayashi H; Ishibashi S; Sasa M; Iwase F; Kato R; Kobayashi A
    J Am Chem Soc; 2014 May; 136(21):7619-22. PubMed ID: 24816031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise determination of the pressure distortion coefficient of new controlled-clearance piston-cylinders based on the Heydemann-Welch model.
    Kajikawa H; Ide K; Kobata T
    Rev Sci Instrum; 2009 Sep; 80(9):095101. PubMed ID: 19791958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.
    Simon F; Murányi F
    J Magn Reson; 2005 Apr; 173(2):288-95. PubMed ID: 15780920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic measurements at pressures above 10 GPa in a miniature ceramic anvil cell for a superconducting quantum interference device magnetometer.
    Tateiwa N; Haga Y; Matsuda TD; Fisk Z
    Rev Sci Instrum; 2012 May; 83(5):053906. PubMed ID: 22667632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.