These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Evaluation of short read metagenomic assembly. Charuvaka A; Rangwala H BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S8. PubMed ID: 21989307 [TBL] [Abstract][Full Text] [Related]
8. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics. Tang H; Li S; Ye Y PLoS Comput Biol; 2016 Dec; 12(12):e1005224. PubMed ID: 27918579 [TBL] [Abstract][Full Text] [Related]
9. Faucet: streaming de novo assembly graph construction. Rozov R; Goldshlager G; Halperin E; Shamir R Bioinformatics; 2018 Jan; 34(1):147-154. PubMed ID: 29036597 [TBL] [Abstract][Full Text] [Related]
10. Metagenome SNP calling via read-colored de Bruijn graphs. Alipanahi B; Muggli MD; Jundi M; Noyes NR; Boucher C Bioinformatics; 2021 Apr; 36(22-23):5275-5281. PubMed ID: 32049324 [TBL] [Abstract][Full Text] [Related]
11. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Namiki T; Hachiya T; Tanaka H; Sakakibara Y Nucleic Acids Res; 2012 Nov; 40(20):e155. PubMed ID: 22821567 [TBL] [Abstract][Full Text] [Related]
12. Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs. Limasset A; Flot JF; Peterlongo P Bioinformatics; 2020 Mar; 36(5):1374-1381. PubMed ID: 30785192 [TBL] [Abstract][Full Text] [Related]
13. MetaVelvet-DL: a MetaVelvet deep learning extension for de novo metagenome assembly. Liang KC; Sakakibara Y BMC Bioinformatics; 2021 Jun; 22(Suppl 6):427. PubMed ID: 34078257 [TBL] [Abstract][Full Text] [Related]
14. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Li D; Luo R; Liu CM; Leung CM; Ting HF; Sadakane K; Yamashita H; Lam TW Methods; 2016 Jun; 102():3-11. PubMed ID: 27012178 [TBL] [Abstract][Full Text] [Related]
15. MetaGT: A pipeline for Shafranskaya D; Kale V; Finn R; Lapidus AL; Korobeynikov A; Prjibelski AD Front Microbiol; 2022; 13():981458. PubMed ID: 36386613 [TBL] [Abstract][Full Text] [Related]
16. Amino acid based de Bruijn graph algorithm for identifying complete coding genes from metagenomic and metatranscriptomic short reads. Liu J; Lian Q; Chen Y; Qi J Nucleic Acids Res; 2019 Mar; 47(5):e30. PubMed ID: 30657979 [TBL] [Abstract][Full Text] [Related]
17. Inference of viral quasispecies with a paired de Bruijn graph. Freire B; Ladra S; Paramá JR; Salmela L Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162 [TBL] [Abstract][Full Text] [Related]
18. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Celaj A; Markle J; Danska J; Parkinson J Microbiome; 2014; 2():39. PubMed ID: 25411636 [TBL] [Abstract][Full Text] [Related]
19. METAMVGL: a multi-view graph-based metagenomic contig binning algorithm by integrating assembly and paired-end graphs. Zhang Z; Zhang L BMC Bioinformatics; 2021 Jul; 22(Suppl 10):378. PubMed ID: 34294039 [TBL] [Abstract][Full Text] [Related]
20. A scalable assembly-free variable selection algorithm for biomarker discovery from metagenomes. Gkanogiannis A; Gazut S; Salanoubat M; Kanj S; Brüls T BMC Bioinformatics; 2016 Aug; 17(1):311. PubMed ID: 27542753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]