These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 26319510)

  • 21. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents.
    Ji L; Chen W; Duan L; Zhu D
    Environ Sci Technol; 2009 Apr; 43(7):2322-7. PubMed ID: 19452881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption mechanisms of organic chemicals on carbon nanotubes.
    Pan B; Xing B
    Environ Sci Technol; 2008 Dec; 42(24):9005-13. PubMed ID: 19174865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Sci Technol; 2010 Aug; 44(16):6377-83. PubMed ID: 20704238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water.
    Zou M; Zhang J; Chen J; Li X
    Environ Sci Technol; 2012 Aug; 46(16):8887-94. PubMed ID: 22816771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentration dependent adsorption of aromatic organic compounds by SWCNTs: Quantum-mechanical descriptors for nano-toxicological studies of biomolecules and agrochemicals.
    Lata S; Vikas
    J Mol Graph Model; 2018 Oct; 85():232-241. PubMed ID: 30227368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochar, activated carbon, and carbon nanotubes have different effects on fate of (14)C-catechol and microbial community in soil.
    Shan J; Ji R; Yu Y; Xie Z; Yan X
    Sci Rep; 2015 Oct; 5():16000. PubMed ID: 26515132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Toxicol Chem; 2012 Jan; 31(1):79-85. PubMed ID: 22021047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes.
    Hua S; Gong JL; Zeng GM; Yao FB; Guo M; Ou XM
    Chemosphere; 2017 Jun; 177():65-76. PubMed ID: 28284117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of fulvic acid by carbon nanotubes from water.
    Yang K; Xing B
    Environ Pollut; 2009 Apr; 157(4):1095-100. PubMed ID: 19084305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption and desorption of crystal violet and basic red 9 by multi-walled carbon nanotubes.
    Chen X; Chin CM
    Water Sci Technol; 2019 Apr; 79(8):1541-1549. PubMed ID: 31169512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules.
    Chayawan ; Vikas
    Environ Pollut; 2016 Nov; 218():615-624. PubMed ID: 27481646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter.
    Ersan G; Kaya Y; Ersan MS; Apul OG; Karanfil T
    Chemosphere; 2019 Aug; 229():515-524. PubMed ID: 31100622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorptive fractionation of dissolved organic matter (DOM) by carbon nanotubes.
    Engel M; Chefetz B
    Environ Pollut; 2015 Feb; 197():287-294. PubMed ID: 25480440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.
    Ersan G; Kaya Y; Apul OG; Karanfil T
    Sci Total Environ; 2016 Sep; 565():811-817. PubMed ID: 27107611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.
    Ding Y; Tian R; Yang Z; Chen J; Lu N
    Biophys Chem; 2017 Mar; 222():1-6. PubMed ID: 28042968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.
    Lou K; Zhu Z; Zhang H; Wang Y; Wang X; Cao J
    Chem Biol Interact; 2016 Jan; 243():54-61. PubMed ID: 26626329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.
    Prola LD; Machado FM; Bergmann CP; de Souza FE; Gally CR; Lima EC; Adebayo MA; Dias SL; Calvete T
    J Environ Manage; 2013 Nov; 130():166-75. PubMed ID: 24076517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes.
    Zhao H; Liu X; Cao Z; Zhan Y; Shi X; Yang Y; Zhou J; Xu J
    J Hazard Mater; 2016 Jun; 310():235-45. PubMed ID: 26937870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of carbon nanotube sheets and their bilirubin adsorption capacity.
    Ando K; Shinke K; Yamada S; Koyama T; Takai T; Nakaji S; Ogino T
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):255-9. PubMed ID: 19327971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms.
    Wang Y; Chen J; Tang W; Xia D; Liang Y; Li X
    Chemosphere; 2019 Jan; 214():79-84. PubMed ID: 30261420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.