BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26319567)

  • 1. Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid.
    Burgé G; Saulou-Bérion C; Moussa M; Pollet B; Flourat A; Allais F; Athès V; Spinnler HE
    Appl Biochem Biotechnol; 2015 Oct; 177(4):923-39. PubMed ID: 26319567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culture conditions affect Lactobacillus reuteri DSM 17938 ability to perform glycerol bioconversion into 3-hydroxypropionic acid.
    Nguyen TL; Saulou-Bérion C; Delettre J; Béal C
    J Biosci Bioeng; 2021 May; 131(5):501-508. PubMed ID: 33597083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Dishisha T; Pereyra LP; Pyo SH; Britton RA; Hatti-Kaul R
    Microb Cell Fact; 2014 May; 13():76. PubMed ID: 24886501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes.
    Sabet-Azad R; Sardari RR; Linares-Pastén JA; Hatti-Kaul R
    Bioresour Technol; 2015 Mar; 180():214-21. PubMed ID: 25614245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol.
    Luo LH; Seo JW; Baek JO; Oh BR; Heo SY; Hong WK; Kim DH; Kim CH
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):697-703. PubMed ID: 20890600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-transformation of Glycerol to 3-Hydroxypropionic Acid Using Resting Cells of Lactobacillus reuteri.
    Ramakrishnan GG; Nehru G; Suppuram P; Balasubramaniyam S; Gulab BR; Subramanian R
    Curr Microbiol; 2015 Oct; 71(4):517-23. PubMed ID: 26204968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated process for the production of 1,3-propanediol, lactate and 3-hydroxypropionic acid by an engineered Lactobacillus reuteri.
    Suppuram P; Ramakrishnan GG; Subramanian R
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):755-762. PubMed ID: 30582401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Zaushitsyna O; Dishisha T; Hatti-Kaul R; Mattiasson B
    J Biotechnol; 2017 Jan; 241():22-32. PubMed ID: 27829124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-Hydroxypropionic acid contributes to the antibacterial activity of glycerol metabolism by the food microbe Limosilactobacillus reuteri.
    Liang N; Neužil-Bunešová V; Tejnecký V; Gänzle M; Schwab C
    Food Microbiol; 2021 Sep; 98():103720. PubMed ID: 33875197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.
    Chen L; Bromberger PD; Nieuwenhuiys G; Hatti-Kaul R
    PLoS One; 2016; 11(12):e0168107. PubMed ID: 28030590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental conditions during glycerol bioconversion affect 3-hydroxypropionic acid bioproduction by Limosilactobacillus reuteri DSM 17938.
    Nguyen TL; Béal C; Ghorbal S; Saulou-Bérion C
    Biotechnol Prog; 2023 Jan; 39(1):e3299. PubMed ID: 36053946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactobacillus reuteri NAD(P)H oxidase: Properties and coexpression with propanediol-utilization enzymes for enhancing 3-hydroxypropionic acid production from 3-hydroxypropionaldehyde.
    Dishisha T; Sabet-Azad R; Arieta V; Hatti-Kaul R
    J Biotechnol; 2019 Jan; 289():135-143. PubMed ID: 30503904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016.
    Ricci MA; Russo A; Pisano I; Palmieri L; de Angelis M; Agrimi G
    J Microbiol Biotechnol; 2015 Jun; 25(6):893-902. PubMed ID: 25588555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains.
    Burgé G; Saulou-Bérion C; Moussa M; Allais F; Athes V; Spinnler HE
    J Microbiol; 2015 Oct; 53(10):702-10. PubMed ID: 26428921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53.
    Ju JH; Wang D; Heo SY; Kim MS; Seo JW; Kim YM; Kim DH; Kang SA; Kim CH; Oh BR
    Microb Cell Fact; 2020 Jan; 19(1):6. PubMed ID: 31931797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of environmental and genetic factors on 3-hydoxypropionaldehyde production by Lactobacillus reuteri.
    Ortiz-Rivera Y; Sánchez-Vega R; Acosta-Muñiz CH; Gutiérrez-Méndez N; León-Félix J; Sepulveda DR
    J Basic Microbiol; 2018 Dec; 58(12):1053-1060. PubMed ID: 30240033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production.
    Stevens MJ; Vollenweider S; Meile L; Lacroix C
    Microb Cell Fact; 2011 Aug; 10():61. PubMed ID: 21812997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol.
    Mota MJ; Lopes RP; Sousa S; Gomes AM; Delgadillo I; Saraiva JA
    Food Res Int; 2018 Nov; 113():424-432. PubMed ID: 30195537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of recombinant Klebsiella pneumoniae ∆dhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Ashok S; Raj SM; Rathnasingh C; Park S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1253-65. PubMed ID: 21336929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of lactate production of Lactobacillus reuteri JCM1112 by co-feeding glycerol with glucose.
    Ichinose R; Fukuda Y; Yamasaki-Yashiki S; Katakura Y
    J Biosci Bioeng; 2020 Jan; 129(1):110-115. PubMed ID: 31519396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.