These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 26319629)
1. A novel performing PEG-cholane nanoformulation for Amphotericin B delivery. Luengo-Alonso C; Torrado JJ; Ballesteros MP; Malfanti A; Bersani S; Salmaso S; Caliceti P Int J Pharm; 2015 Nov; 495(1):41-51. PubMed ID: 26319629 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Wang Y; Ke X; Voo ZX; Yap SSL; Yang C; Gao S; Liu S; Venkataraman S; Obuobi SAO; Khara JS; Yang YY; Ee PLR Acta Biomater; 2016 Dec; 46():211-220. PubMed ID: 27686042 [TBL] [Abstract][Full Text] [Related]
3. Self-assembling nanocomposites for protein delivery: supramolecular interactions between PEG-cholane and rh-G-CSF. Salmaso S; Bersani S; Mastrotto F; Tonon G; Schrepfer R; Genovese S; Caliceti P J Control Release; 2012 Aug; 162(1):176-84. PubMed ID: 22727711 [TBL] [Abstract][Full Text] [Related]
4. Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral Zhou L; Zhang P; Chen Z; Cai S; Jing T; Fan H; Mo F; Zhang J; Lin R Int J Nanomedicine; 2017; 12():4269-4283. PubMed ID: 28652732 [TBL] [Abstract][Full Text] [Related]
5. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B. Alvarez C; Shin DH; Kwon GS Pharm Res; 2016 Sep; 33(9):2098-106. PubMed ID: 27198671 [TBL] [Abstract][Full Text] [Related]
6. Combination antifungal therapy involving amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles. Vakil R; Knilans K; Andes D; Kwon GS Pharm Res; 2008 Sep; 25(9):2056-64. PubMed ID: 18415047 [TBL] [Abstract][Full Text] [Related]
7. A novel soluble supramolecular system for sustained rh-GH delivery. Salmaso S; Bersani S; Scomparin A; Balasso A; Brazzale C; Barattin M; Caliceti P J Control Release; 2014 Nov; 194():168-77. PubMed ID: 25192817 [TBL] [Abstract][Full Text] [Related]
8. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. Yu BG; Okano T; Kataoka K; Kwon G J Control Release; 1998 Apr; 53(1-3):131-6. PubMed ID: 9741920 [TBL] [Abstract][Full Text] [Related]
9. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles. Yu BG; Okano T; Kataoka K; Sardari S; Kwon GS J Control Release; 1998 Dec; 56(1-3):285-91. PubMed ID: 9801451 [TBL] [Abstract][Full Text] [Related]
10. "Click" amphotericin B in prodrug nanoformulations for enhanced systemic fungemia treatment. Guo D; Shi C; Suo L; Ji X; Yue H; Yuan D; Luo J J Control Release; 2024 Jun; 370():626-642. PubMed ID: 38734314 [TBL] [Abstract][Full Text] [Related]
11. Linolenic acid-modified MPEG-PEI micelles for encapsulation of amphotericin B. Xu H; Teng F; Zhou F; Zhu L; Wen Y; Feng R; Song Z Future Med Chem; 2019 Oct; 11(20):2647-2662. PubMed ID: 31621420 [No Abstract] [Full Text] [Related]
12. Mixed micellar nanoparticle of amphotericin B and poly styrene-block-poly ethylene oxide reduces nephrotoxicity but retains antifungal activity. Han K; Miah MA; Shanmugam S; Yong CS; Choi HG; Kim JA; Yoo BK Arch Pharm Res; 2007 Oct; 30(10):1344-9. PubMed ID: 18038914 [TBL] [Abstract][Full Text] [Related]
13. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Adams ML; Andes DR; Kwon GS Biomacromolecules; 2003; 4(3):750-7. PubMed ID: 12741794 [TBL] [Abstract][Full Text] [Related]
14. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Radwan MA; AlQuadeib BT; Šiller L; Wright MC; Horrocks B Drug Deliv; 2017 Nov; 24(1):40-50. PubMed ID: 28155565 [TBL] [Abstract][Full Text] [Related]
15. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B. Hussain A; Singh VK; Singh OP; Shafaat K; Kumar S; Ahmad FJ Drug Deliv; 2016 Oct; 23(8):3101-3110. PubMed ID: 27854145 [TBL] [Abstract][Full Text] [Related]
16. Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. Moribe K; Maruyama S; Inoue Y; Suzuki T; Fukami T; Tomono K; Higashi K; Tozuka Y; Yamamoto K Int J Pharm; 2010 Mar; 387(1-2):236-43. PubMed ID: 20005934 [TBL] [Abstract][Full Text] [Related]
17. Pharmacokinetics and Renal Toxicity of Monomeric Amphotericin B in Rats after a Multiple Dose Regimen. Kang JY; Gao J; Shin DH; Alvarez C; Zhong W; Kwon GS Pharm Nanotechnol; 2016; 4(1):16-23. PubMed ID: 27774409 [TBL] [Abstract][Full Text] [Related]
18. Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Diezi TA; Kwon G Pharm Res; 2012 Jul; 29(7):1737-44. PubMed ID: 22130733 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a Polyethylene Glycol-Amphotericin B Conjugate Loaded with Free AMB for Improved Antifungal Efficacy. Tan TR; Hoi KM; Zhang P; Ng SK PLoS One; 2016; 11(3):e0152112. PubMed ID: 27008086 [TBL] [Abstract][Full Text] [Related]
20. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. Serafim C; Ferreira I; Rijo P; Pinheiro L; Faustino C; Calado A; Garcia-Rio L Int J Pharm; 2016 Jan; 497(1-2):23-35. PubMed ID: 26617315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]