BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26319629)

  • 1. A novel performing PEG-cholane nanoformulation for Amphotericin B delivery.
    Luengo-Alonso C; Torrado JJ; Ballesteros MP; Malfanti A; Bersani S; Salmaso S; Caliceti P
    Int J Pharm; 2015 Nov; 495(1):41-51. PubMed ID: 26319629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B.
    Wang Y; Ke X; Voo ZX; Yap SSL; Yang C; Gao S; Liu S; Venkataraman S; Obuobi SAO; Khara JS; Yang YY; Ee PLR
    Acta Biomater; 2016 Dec; 46():211-220. PubMed ID: 27686042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembling nanocomposites for protein delivery: supramolecular interactions between PEG-cholane and rh-G-CSF.
    Salmaso S; Bersani S; Mastrotto F; Tonon G; Schrepfer R; Genovese S; Caliceti P
    J Control Release; 2012 Aug; 162(1):176-84. PubMed ID: 22727711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral
    Zhou L; Zhang P; Chen Z; Cai S; Jing T; Fan H; Mo F; Zhang J; Lin R
    Int J Nanomedicine; 2017; 12():4269-4283. PubMed ID: 28652732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B.
    Alvarez C; Shin DH; Kwon GS
    Pharm Res; 2016 Sep; 33(9):2098-106. PubMed ID: 27198671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination antifungal therapy involving amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles.
    Vakil R; Knilans K; Andes D; Kwon GS
    Pharm Res; 2008 Sep; 25(9):2056-64. PubMed ID: 18415047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel soluble supramolecular system for sustained rh-GH delivery.
    Salmaso S; Bersani S; Scomparin A; Balasso A; Brazzale C; Barattin M; Caliceti P
    J Control Release; 2014 Nov; 194():168-77. PubMed ID: 25192817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B.
    Yu BG; Okano T; Kataoka K; Kwon G
    J Control Release; 1998 Apr; 53(1-3):131-6. PubMed ID: 9741920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles.
    Yu BG; Okano T; Kataoka K; Sardari S; Kwon GS
    J Control Release; 1998 Dec; 56(1-3):285-91. PubMed ID: 9801451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Click" amphotericin B in prodrug nanoformulations for enhanced systemic fungemia treatment.
    Guo D; Shi C; Suo L; Ji X; Yue H; Yuan D; Luo J
    J Control Release; 2024 Jun; 370():626-642. PubMed ID: 38734314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linolenic acid-modified MPEG-PEI micelles for encapsulation of amphotericin B.
    Xu H; Teng F; Zhou F; Zhu L; Wen Y; Feng R; Song Z
    Future Med Chem; 2019 Oct; 11(20):2647-2662. PubMed ID: 31621420
    [No Abstract]   [Full Text] [Related]  

  • 12. Mixed micellar nanoparticle of amphotericin B and poly styrene-block-poly ethylene oxide reduces nephrotoxicity but retains antifungal activity.
    Han K; Miah MA; Shanmugam S; Yong CS; Choi HG; Kim JA; Yoo BK
    Arch Pharm Res; 2007 Oct; 30(10):1344-9. PubMed ID: 18038914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a Polyethylene Glycol-Amphotericin B Conjugate Loaded with Free AMB for Improved Antifungal Efficacy.
    Tan TR; Hoi KM; Zhang P; Ng SK
    PLoS One; 2016; 11(3):e0152112. PubMed ID: 27008086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity.
    Adams ML; Andes DR; Kwon GS
    Biomacromolecules; 2003; 4(3):750-7. PubMed ID: 12741794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats.
    Radwan MA; AlQuadeib BT; Šiller L; Wright MC; Horrocks B
    Drug Deliv; 2017 Nov; 24(1):40-50. PubMed ID: 28155565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B.
    Hussain A; Singh VK; Singh OP; Shafaat K; Kumar S; Ahmad FJ
    Drug Deliv; 2016 Oct; 23(8):3101-3110. PubMed ID: 27854145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs.
    Moribe K; Maruyama S; Inoue Y; Suzuki T; Fukami T; Tomono K; Higashi K; Tozuka Y; Yamamoto K
    Int J Pharm; 2010 Mar; 387(1-2):236-43. PubMed ID: 20005934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics and Renal Toxicity of Monomeric Amphotericin B in Rats after a Multiple Dose Regimen.
    Kang JY; Gao J; Shin DH; Alvarez C; Zhong W; Kwon GS
    Pharm Nanotechnol; 2016; 4(1):16-23. PubMed ID: 27774409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B.
    Diezi TA; Kwon G
    Pharm Res; 2012 Jul; 29(7):1737-44. PubMed ID: 22130733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B.
    Serafim C; Ferreira I; Rijo P; Pinheiro L; Faustino C; Calado A; Garcia-Rio L
    Int J Pharm; 2016 Jan; 497(1-2):23-35. PubMed ID: 26617315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.