BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 26319721)

  • 1. Modeling the growth rate and lag time of different strains of Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce.
    Sant'Ana AS; Franco BD; Schaffner DW
    Food Microbiol; 2012 May; 30(1):267-73. PubMed ID: 22265311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Temperature Effect on the Growth of Uropathogenic
    Lu KH; Hsu A; Pan YC; Huang YJ; Goh LY; Kang CY; Sheen LY
    Foodborne Pathog Dis; 2023 Aug; 20(8):343-350. PubMed ID: 37410536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The STARTEC Decision Support Tool for Better Tradeoffs between Food Safety, Quality, Nutrition, and Costs in Production of Advanced Ready-to-Eat Foods.
    Skjerdal T; Gefferth A; Spajic M; Estanga EG; De Cesare A; Vitali S; Pasquali F; Bovo F; Manfreda G; Mancusi R; Trevisiani M; Tessema GT; Fagereng T; Moen LH; Lyshaug L; Koidis A; Delgado-Pando G; Stratakos AC; Boeri M; From C; Syed H; Muccioli M; Mulazzani R; Halbert C
    Biomed Res Int; 2017; 2017():6353510. PubMed ID: 29457031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive growth model of the effects of temperature on the growth kinetics of generic
    Park SY; Ha SD
    J Food Sci Technol; 2018 Feb; 55(2):506-512. PubMed ID: 29391614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative characterization and dynamics of bacterial communities in ready-to-eat chicken using high-throughput sequencing combined with internal standard-based absolute quantification.
    Yi Z; Qiu M; Xiao X; Ma J; Yang H; Wang W
    Food Microbiol; 2024 Apr; 118():104419. PubMed ID: 38049274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature status of domestic refrigerators and its effect on the risk of listeriosis from ready-to-eat (RTE) cooked meat products.
    van der Vossen-Wijmenga WP; den Besten HMW; Zwietering MH
    Int J Food Microbiol; 2024 Mar; 413():110516. PubMed ID: 38277870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of experimental protocols for use of cardinal models for prediction of microorganism growth in food products.
    Pinon A; Zwietering M; Perrier L; Membré JM; Leporq B; Mettler E; Thuault D; Coroller L; Stahl V; Vialette M
    Appl Environ Microbiol; 2004 Feb; 70(2):1081-7. PubMed ID: 14766591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training in tools to develop Quantitative Risk Assessment using Spanish ready-to-eat food examples.
    ; Georgalis L; Garre A; Fernandez Escamez PS
    EFSA J; 2020 Nov; 18(Suppl 1):e181103. PubMed ID: 33294042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature.
    Morales G; Llorente I; Montesinos E; Moragrega C
    PLoS One; 2017; 12(5):e0177583. PubMed ID: 28493954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of the surface growth of
    Koňuchová M; Boháčiková A; Valík Ľ
    Heliyon; 2024 May; 10(9):e30812. PubMed ID: 38765159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of logistic regression and linear regression in modeling percentage data.
    Zhao L; Chen Y; Schaffner DW
    Appl Environ Microbiol; 2001 May; 67(5):2129-35. PubMed ID: 11319091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth Control of
    Tönz A; Freimüller Leischtfeld S; Stevens MJA; Glinski-Häfeli D; Ladner V; Gantenbein-Demarchi C; Miescher Schwenninger S
    Foods; 2024 Jan; 13(2):. PubMed ID: 38254599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the Growth Rate of
    Szczawiński J; Ewa Szczawińska M; Łobacz A; Tracz M; Jackowska-Tracz A
    J Vet Res; 2017 Mar; 61(1):45-51. PubMed ID: 29978054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery and Growth Potential of Listeria monocytogenes in Temperature Abused Milkshakes Prepared from Naturally Contaminated Ice Cream Linked to a Listeriosis Outbreak.
    Chen Y; Allard E; Wooten A; Hur M; Sheth I; Laasri A; Hammack TS; Macarisin D
    Front Microbiol; 2016; 7():764. PubMed ID: 27242775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Effect of Storage Temperatures on the Growth of Listeria monocytogenes on Ready-to-Eat Ham and Sausage.
    Luo K; Hong SS; Oh DH
    J Food Prot; 2015 Sep; 78(9):1675-81. PubMed ID: 26319721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of a regression model for Listeria monocytogenes growth in roast beefs.
    Skjerdal T; Gangsei LE; Alvseike O; Kausrud K; De Cesare A; Alexa EA; Alvarez-Ordóñez A; Moen LH; Osland AM; From C; Nordvik B; Lindbäck T; Kvello J; Folgerø B; Dommersnes S; Hauge SJ
    Food Microbiol; 2021 Sep; 98():103770. PubMed ID: 33875206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the lag phase and growth rate of Listeria monocytogenes in ground ham containing sodium lactate and sodium diacetate at various storage temperatures.
    Hwang CA; Tamplin ML
    J Food Sci; 2007 Sep; 72(7):M246-53. PubMed ID: 17995648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Predictive Models for the Growth Kinetics of Listeria monocytogenes on Fresh Pork under Different Storage Temperatures.
    Luo K; Hong SS; Wang J; Chung MJ; Deog-Hwan O
    J Food Prot; 2015 May; 78(5):921-6. PubMed ID: 25951385
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.