These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. Ford C; Nans A; Boucrot E; Hayward RD PLoS Pathog; 2018 May; 14(5):e1007051. PubMed ID: 29727463 [TBL] [Abstract][Full Text] [Related]
4. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479 [TBL] [Abstract][Full Text] [Related]
5. Conserved type III secretion system exerts important roles in Chlamydia trachomatis. Dai W; Li Z Int J Clin Exp Pathol; 2014; 7(9):5404-14. PubMed ID: 25337183 [TBL] [Abstract][Full Text] [Related]
6. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion. Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA mBio; 2021 Jan; 12(1):. PubMed ID: 33468693 [No Abstract] [Full Text] [Related]
7. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity. Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758 [TBL] [Abstract][Full Text] [Related]
8. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System. Gao L; Cong Y; Plano GV; Rao X; Gisclair LN; Schesser Bartra S; Macnaughtan MA; Shen L J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424009 [No Abstract] [Full Text] [Related]
9. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
10. Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nans A; Kudryashev M; Saibil HR; Hayward RD Nat Commun; 2015 Dec; 6():10114. PubMed ID: 26656452 [TBL] [Abstract][Full Text] [Related]
11. The Type III Secretion Effector CteG Mediates Host Cell Lytic Exit of Pereira IS; Pais SV; Borges V; Borrego MJ; Gomes JP; Mota LJ Front Cell Infect Microbiol; 2022; 12():902210. PubMed ID: 35903198 [No Abstract] [Full Text] [Related]
12. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors. Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332 [TBL] [Abstract][Full Text] [Related]
13. Electron tomography and cryo-SEM characterization reveals novel ultrastructural features of host-parasite interaction during Chlamydia abortus infection. Wilkat M; Herdoiza E; Forsbach-Birk V; Walther P; Essig A Histochem Cell Biol; 2014 Aug; 142(2):171-84. PubMed ID: 24522393 [TBL] [Abstract][Full Text] [Related]
14. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by Caven L; Carabeo RA Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31877733 [TBL] [Abstract][Full Text] [Related]
15. Type III Secretion in Rucks EA Microbiol Mol Biol Rev; 2023 Sep; 87(3):e0003423. PubMed ID: 37358451 [TBL] [Abstract][Full Text] [Related]
16. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP. Brinkworth AJ; Malcolm DS; Pedrosa AT; Roguska K; Shahbazian S; Graham JE; Hayward RD; Carabeo RA Mol Microbiol; 2011 Oct; 82(1):131-44. PubMed ID: 21883523 [TBL] [Abstract][Full Text] [Related]
17. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Luís MP; Pereira IS; Bugalhão JN; Simões CN; Mota C; Romão MJ; Mota LJ Infect Immun; 2023 Apr; 91(4):e0040522. PubMed ID: 36877064 [TBL] [Abstract][Full Text] [Related]
18. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development. Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835 [TBL] [Abstract][Full Text] [Related]
19. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. Kim JH; Jiang S; Elwell CA; Engel JN PLoS Pathog; 2011 Oct; 7(10):e1002285. PubMed ID: 21998584 [TBL] [Abstract][Full Text] [Related]
20. Induction of type III secretion by cell-free Chlamydia trachomatis elementary bodies. Jamison WP; Hackstadt T Microb Pathog; 2008; 45(5-6):435-40. PubMed ID: 18984037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]