These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 26320405)
1. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms. Su G; Wang S; Yuan Z; Peng Y J Biosci Bioeng; 2016 Mar; 121(3):293-8. PubMed ID: 26320405 [TBL] [Abstract][Full Text] [Related]
2. Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses. Xie J; Duan X; Feng L; Yan Y; Wang F; Dong H; Jia R; Zhou Q Chemosphere; 2019 Mar; 219():305-312. PubMed ID: 30543966 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
4. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion. Zhou A; Guo Z; Yang C; Kong F; Liu W; Wang A J Biotechnol; 2013 Oct; 168(2):234-9. PubMed ID: 23751505 [TBL] [Abstract][Full Text] [Related]
5. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation. Wang B; Peng Y; Guo Y; Wang S J Biosci Bioeng; 2016 Apr; 121(4):431-4. PubMed ID: 26475401 [TBL] [Abstract][Full Text] [Related]
6. The role of methanogens in acetic acid production under different salinity conditions. Xiao K; Guo C; Maspolim Y; Zhou Y; Ng WJ Chemosphere; 2016 Oct; 161():53-60. PubMed ID: 27421101 [TBL] [Abstract][Full Text] [Related]
7. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids. Lin L; Li XY Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135 [TBL] [Abstract][Full Text] [Related]
8. Improved volatile fatty acids production from proteins of sewage sludge with anthraquinone-2,6-disulfonate (AQDS) under anaerobic condition. Yang X; Du M; Lee DJ; Wan C; Zheng L; Wan F Bioresour Technol; 2012 Jan; 103(1):494-7. PubMed ID: 22047658 [TBL] [Abstract][Full Text] [Related]
9. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH? Ma H; Chen X; Liu H; Liu H; Fu B Waste Manag; 2016 Feb; 48():397-403. PubMed ID: 26652215 [TBL] [Abstract][Full Text] [Related]
10. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12. Yang X; Wan C; Lee DJ; Du M; Pan X; Wan F Bioresour Technol; 2014 Sep; 168():173-9. PubMed ID: 24630368 [TBL] [Abstract][Full Text] [Related]
11. Hydrolysis and acidification of waste activated sludge at different pHs. Chen Y; Jiang S; Yuan H; Zhou Q; Gu G Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541 [TBL] [Abstract][Full Text] [Related]
12. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass. Huang J; Zhou R; Chen J; Han W; Chen Y; Wen Y; Tang J Bioresour Technol; 2016 Jul; 211():80-6. PubMed ID: 27003793 [TBL] [Abstract][Full Text] [Related]
13. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications. Luo K; Pang Y; Yang Q; Wang D; Li X; Lei M; Huang Q Environ Sci Pollut Res Int; 2019 May; 26(14):13984-13998. PubMed ID: 30900121 [TBL] [Abstract][Full Text] [Related]
14. Enhanced volatile fatty acids production from waste activated sludge with synchronous phosphorus fixation and pathogens inactivation by calcium hypochlorite stimulation. Zhang Q; Wu Y; Luo J; Cao J; Kang C; Wang S; Li K; Zhao J; Aleem M; Wang D Sci Total Environ; 2020 Apr; 712():136500. PubMed ID: 31931205 [TBL] [Abstract][Full Text] [Related]
15. Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge. Duan X; Wang X; Xie J; Feng L; Yan Y; Zhou Q Water Res; 2016 Nov; 105():209-217. PubMed ID: 27619497 [TBL] [Abstract][Full Text] [Related]
16. Enhanced anaerobic fermentation of waste activated sludge by NaCl assistant hydrolysis strategy: Improved bio-production of short-chain fatty acids and feasibility of NaCl reuse. Pang H; Xu J; He J; Pan X; Ma Y; Li L; Li K; Yan Z; Nan J Bioresour Technol; 2020 Sep; 312():123303. PubMed ID: 32521466 [TBL] [Abstract][Full Text] [Related]
17. Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. Pratt S; Liew D; Batstone DJ; Werker AG; Morgan-Sagastume F; Lant PA J Biotechnol; 2012 May; 159(1-2):38-43. PubMed ID: 22361002 [TBL] [Abstract][Full Text] [Related]
18. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Hu J; Zhao J; Wang D; Li X; Zhang D; Xu Q; Peng L; Yang Q; Zeng G Bioresour Technol; 2018 Apr; 254():7-15. PubMed ID: 29413941 [TBL] [Abstract][Full Text] [Related]
19. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Jiang S; Chen Y; Zhou Q; Gu G Water Res; 2007 Jul; 41(14):3112-20. PubMed ID: 17499838 [TBL] [Abstract][Full Text] [Related]
20. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl. He X; Yin J; Liu J; Chen T; Shen D Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]