BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26320454)

  • 21. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.
    Qian H; Sun B; Miao H; Cai C; Xu C; Wang Q
    Food Chem; 2015 Feb; 168():321-6. PubMed ID: 25172716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening and identification of major phytochemical compounds in seeds, sprouts and leaves of Tuscan black kale Brassica oleracea (L.) ssp acephala (DC) var. sabellica L.
    Giorgetti L; Giorgi G; Cherubini E; Gervasi PG; Della Croce CM; Longo V; Bellani L
    Nat Prod Res; 2018 Jul; 32(14):1617-1626. PubMed ID: 29058468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. (RS)-glucoraphanin purified from Tuscan black kale and bioactivated with myrosinase enzyme protects against cerebral ischemia/reperfusion injury in rats.
    Giacoppo S; Galuppo M; Iori R; De Nicola GR; Bramanti P; Mazzon E
    Fitoterapia; 2014 Dec; 99():166-77. PubMed ID: 25281776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid and Cost-Effective Quantification of Glucosinolates and Total Phenolic Content in Rocket Leaves by Visible/Near-Infrared Spectroscopy.
    Toledo-Martín EM; Font R; Obregón-Cano S; De Haro-Bailón A; Villatoro-Pulido M; Del Río-Celestino M
    Molecules; 2017 May; 22(5):. PubMed ID: 28531129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of sulfur fertilizer on glucoraphanin levels in broccoli (B. oleracea L. var. italica) at different growth stages.
    Rangkadilok N; Nicolas ME; Bennett RN; Eagling DR; Premier RR; Taylor PW
    J Agric Food Chem; 2004 May; 52(9):2632-9. PubMed ID: 15113170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-inflammatory and anti-apoptotic effects of (RS)-glucoraphanin bioactivated with myrosinase in murine sub-acute and acute MPTP-induced Parkinson's disease.
    Galuppo M; Iori R; De Nicola GR; Bramanti P; Mazzon E
    Bioorg Med Chem; 2013 Sep; 21(17):5532-47. PubMed ID: 23810671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent.
    Abdull Razis AF; De Nicola GR; Pagnotta E; Iori R; Ioannides C
    Arch Toxicol; 2012 Feb; 86(2):183-94. PubMed ID: 21960141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods.
    Franco P; Spinozzi S; Pagnotta E; Lazzeri L; Ugolini L; Camborata C; Roda A
    J Chromatogr A; 2016 Jan; 1428():154-61. PubMed ID: 26363943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of Poly(glycidyl methacrylate) (PGMA) and Amine Modified PGMA Adsorbents for Purification of Glucosinolates from Cruciferous Plants.
    Cheng L; Wu J; Liang H; Yuan Q
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32698371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Glance at… Broccoli, glucoraphanin, and sulforaphane.
    Glade MJ; Meguid MM
    Nutrition; 2015 Sep; 31(9):1175-8. PubMed ID: 26004191
    [No Abstract]   [Full Text] [Related]  

  • 31.
    Blažević I; Đulović A; Čikeš Čulić V; Burčul F; Ljubenkov I; Ruščić M; Generalić Mekinić I
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30791395
    [No Abstract]   [Full Text] [Related]  

  • 32. The isolation and purification of glucoraphanin from broccoli seeds by solid phase extraction and preparative high performance liquid chromatography.
    Rochfort S; Caridi D; Stinton M; Trenerry VC; Jones R
    J Chromatogr A; 2006 Jul; 1120(1-2):205-10. PubMed ID: 16457830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cardiovascular benefits of Eruca sativa mill. Defatted seed meal extract: Potential role of hydrogen sulfide.
    Testai L; Pagnotta E; Piragine E; Flori L; Citi V; Martelli A; Mannelli LDC; Ghelardini C; Matteo R; Suriano S; Troccoli A; Pecchioni N; Calderone V
    Phytother Res; 2022 Jun; 36(6):2616-2627. PubMed ID: 35478197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae.
    Mullaney JA; Kelly WJ; McGhie TK; Ansell J; Heyes JA
    J Agric Food Chem; 2013 Mar; 61(12):3039-46. PubMed ID: 23461529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables.
    Cámara-Martos F; Obregón-Cano S; Mesa-Plata O; Cartea-González ME; de Haro-Bailón A
    Food Chem; 2021 Mar; 339():127860. PubMed ID: 32866700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of carcinogenesis by isothiocyanates.
    Hecht SS
    Drug Metab Rev; 2000; 32(3-4):395-411. PubMed ID: 11139137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Curcumin activates the aryl hydrocarbon receptor yet significantly inhibits (-)-benzo(a)pyrene-7R-trans-7,8-dihydrodiol bioactivation in oral squamous cell carcinoma cells and oral mucosa.
    Rinaldi AL; Morse MA; Fields HW; Rothas DA; Pei P; Rodrigo KA; Renner RJ; Mallery SR
    Cancer Res; 2002 Oct; 62(19):5451-6. PubMed ID: 12359752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Cancer chemopreventive agents: glucosinolates and their decomposition products in white cabbage (Brassica oleracea var. capitata)].
    Smiechowska A; Bartoszek A; Namieśnik J
    Postepy Hig Med Dosw (Online); 2008 Apr; 62():125-40. PubMed ID: 18388852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of important glucosinolates in three common Brassica vegetables during their processing into vegetable powder and in vitro gastric digestion.
    Kuljarachanan T; Fu N; Chiewchan N; Devahastin S; Chen XD
    Food Funct; 2020 Jan; 11(1):211-220. PubMed ID: 31915766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.
    Vale AP; Santos J; Brito NV; Fernandes D; Rosa E; Oliveira MB
    Phytochemistry; 2015 Jul; 115():252-60. PubMed ID: 25698361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.