BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26320538)

  • 21. Reasons for rejecting th "flow theory" of calcified tissue metabolism.
    Miller WA
    Rev Can Biol; 1973 Dec; 32(4):281-9. PubMed ID: 4589476
    [No Abstract]   [Full Text] [Related]  

  • 22. Periodontal disease-associated compensatory expression of osteoprotegerin is lost in type 1 diabetes mellitus and correlates with alveolar bone destruction by regulating osteoclastogenesis.
    Silva JA; Lopes Ferrucci D; Peroni LA; de Paula Ishi E; Rossa-Junior C; Carvalho HF; Stach-Machado DR
    Cells Tissues Organs; 2012; 196(2):137-50. PubMed ID: 22301390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Osteoclasts in bone metabolism].
    Hakeda Y; Kumegawa M
    Kaibogaku Zasshi; 1991 Aug; 66(4):215-25. PubMed ID: 1759556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca2+ or phorbol ester but not inflammatory stimuli elevate inducible nitric oxide synthase messenger ribonucleic acid and nitric oxide (NO) release in avian osteoclasts: autocrine NO mediates Ca2+-inhibited bone resorption.
    Sunyer T; Rothe L; Kirsch D; Jiang X; Anderson F; Osdoby P; Collin-Osdoby P
    Endocrinology; 1997 May; 138(5):2148-62. PubMed ID: 9112415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New roles for osteoclasts in bone.
    Boyce BF; Yao Z; Zhang Q; Guo R; Lu Y; Schwarz EM; Xing L
    Ann N Y Acad Sci; 2007 Nov; 1116():245-54. PubMed ID: 18083932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Safety of oral bisphosphonates: controlled studies on alveolar bone.
    Jeffcoat MK
    Int J Oral Maxillofac Implants; 2006; 21(3):349-53. PubMed ID: 16796276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vascular expression of the chemokine CX3CL1 promotes osteoclast recruitment and exacerbates bone resorption in an irradiated murine model.
    Han KH; Ryu JW; Lim KE; Lee SH; Kim Y; Hwang CS; Choi JY; Han KO
    Bone; 2014 Apr; 61():91-101. PubMed ID: 24401612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Selenium and organic diseases of the oral cavity].
    Petrovich IuA; Podorozhnaia RP; Vavilova TP
    Stomatologiia (Mosk); 1981; 60(2):68-72. PubMed ID: 7022756
    [No Abstract]   [Full Text] [Related]  

  • 29. CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients.
    Grassi F; Cristino S; Toneguzzi S; Piacentini A; Facchini A; Lisignoli G
    J Cell Physiol; 2004 May; 199(2):244-51. PubMed ID: 15040007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bi-directionally selective bone targeting delivery for anabolic and antiresorptive drugs: a novel combined therapy for osteoporosis?
    Liu J; Zhang H; Dong Y; Jin Y; Hu X; Cai K; Ma J; Wu G
    Med Hypotheses; 2014 Dec; 83(6):694-6. PubMed ID: 25459136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A useful method to evaluate bone resorption inhibitors, using osteoclast-like multinucleated cells.
    Sugawara K; Hamada M; Hosoi S; Tamaoki T
    Anal Biochem; 1998 Jan; 255(2):204-10. PubMed ID: 9451505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological and pharmacologic regulation of bone resorption--a 1978 update.
    Raisz LG
    J Periodontol; 1979 Apr; 50(4 Spec No):3-6. PubMed ID: 222886
    [No Abstract]   [Full Text] [Related]  

  • 33. The (mis) use of bone resorption markers in the context of bisphosphonate exposure, dental surgery and osteonecrosis of the jaw.
    Don-Wauchope AC; Cole DE
    Clin Biochem; 2009 Jul; 42(10-11):1194-6. PubMed ID: 19265689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of T cell-dependent and RANKL-dependent osteoclastogenic processes associated with high levels of bone mass in interleukin-15 receptor-deficient mice.
    Djaafar S; Pierroz DD; Chicheportiche R; Zheng XX; Ferrari SL; Ferrari-Lacraz S
    Arthritis Rheum; 2010 Nov; 62(11):3300-10. PubMed ID: 20617528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clastic cells: mineralized tissue resorption in health and disease.
    Arana-Chavez VE; Bradaschia-Correa V
    Int J Biochem Cell Biol; 2009 Mar; 41(3):446-50. PubMed ID: 18840541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts.
    Vaes G
    Clin Orthop Relat Res; 1988 Jun; (231):239-71. PubMed ID: 3286076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Bone and Stem Cells. Molecular mechanisms of the differentiation and activation of osteoclasts derived from hematopoietic cells].
    Hayashi M; Nakashima T
    Clin Calcium; 2014 Apr; 24(4):487-500. PubMed ID: 24681494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1.
    Riihonen R; Nielsen S; Väänänen HK; Laitala-Leinonen T; Kwon TH
    Matrix Biol; 2010 May; 29(4):287-94. PubMed ID: 20079835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Open Thy Lattice Osteoclast, Resorb me!
    Bakiri L
    J Cell Biol; 2023 Apr; 222(4):. PubMed ID: 36928467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New concepts in bone metabolism: clinical implications.
    Mundy GR
    Hosp Pract (Off Ed); 1991; 26 Suppl 1():7-12. PubMed ID: 1898515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.