These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26320546)

  • 1. In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method.
    Veselinović AM; Veselinović JB; Toropov AA; Toropova AP; Nikolić GM
    Int J Pharm; 2015 Nov; 495(1):404-409. PubMed ID: 26320546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo QSAR models for predicting organophosphate inhibition of acetycholinesterase.
    Veselinović JB; Nikolić GM; Trutić NV; Živković JV; Veselinović AM
    SAR QSAR Environ Res; 2015 Jun; 26(6):449-60. PubMed ID: 26043064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software.
    Achary PG
    SAR QSAR Environ Res; 2014; 25(6):507-26. PubMed ID: 24716837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CORAL: QSPR model of water solubility based on local and global SMILES attributes.
    Toropov AA; Toropova AP; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Chemosphere; 2013 Jan; 90(2):877-80. PubMed ID: 22921649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMILES-based quantitative structure-property relationships for half-wave potential of N-benzylsalicylthioamides.
    Nesmerak K; Toropov AA; Toropova AP; Kohoutova P; Waisser K
    Eur J Med Chem; 2013 Sep; 67():111-4. PubMed ID: 23850571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the adsorption coefficients of some aromatic compounds on multi-wall carbon nanotubes by the Monte Carlo method.
    Ahmadi S; Akbari A
    SAR QSAR Environ Res; 2018 Nov; 29(11):895-909. PubMed ID: 30332923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. coral Software: QSAR for Anticancer Agents.
    Benfenati E; Toropov AA; Toropova AP; Manganaro A; Gonella Diaza R
    Chem Biol Drug Des; 2011 Jun; 77(6):471-6. PubMed ID: 21435183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo method based QSAR modelling of natural lipase inhibitors using hybrid optimal descriptors.
    Kumar A; Chauhan S
    SAR QSAR Environ Res; 2017 Mar; 28(3):179-197. PubMed ID: 28271914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSPR in forensic analysis - The prediction of retention time of pesticide residues based on the Monte Carlo method.
    Zdravković M; Antović A; Veselinović JB; Sokolović D; Veselinović AM
    Talanta; 2018 Feb; 178():656-662. PubMed ID: 29136877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR modelling with the topological substructural molecular design approach: beta-cyclodextrin complexation.
    Pérez-Garrido A; Helguera AM; Cordeiro MN; Escudero AG
    J Pharm Sci; 2009 Dec; 98(12):4557-76. PubMed ID: 19504577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo method based QSPR model for prediction of reaction rate constants of hydrated electrons with organic contaminants.
    Ahmadi S; Lotfi S; Kumar P
    SAR QSAR Environ Res; 2020 Dec; 31(12):935-950. PubMed ID: 33179988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies.
    Merzlikine A; Abramov YA; Kowsz SJ; Thomas VH; Mano T
    Int J Pharm; 2011 Oct; 418(2):207-16. PubMed ID: 21497190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of prediction model for fructose- 1,6- bisphosphatase inhibitors using the Monte Carlo method.
    Manisha ; Chauhan S; Kumar P; Kumar A
    SAR QSAR Environ Res; 2019 Mar; 30(3):145-159. PubMed ID: 30777782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
    Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The anesthetic action of some polyhalogenated ethers-Monte Carlo method based QSAR study.
    Golubović M; Lazarević M; Zlatanović D; Krtinić D; Stoičkov V; Mladenović B; Milić DJ; Sokolović D; Veselinović AM
    Comput Biol Chem; 2018 Aug; 75():32-38. PubMed ID: 29734080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR Differential Model for Prediction of SIRT1 Modulation using Monte Carlo Method.
    Kumar A; Chauhan S
    Drug Res (Stuttg); 2017 Mar; 67(3):156-162. PubMed ID: 27992935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the Monte Carlo Method for OECD Principles-Guided QSAR Modeling of SIRT1 Inhibitors.
    Kumar A; Chauhan S
    Arch Pharm (Weinheim); 2017 Jan; 350(1):. PubMed ID: 28025857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte carlo method-based QSAR modeling of penicillins binding to human serum proteins.
    Veselinović JB; Toropov AA; Toropova AP; Nikolić GM; Veselinović AM
    Arch Pharm (Weinheim); 2015 Jan; 348(1):62-7. PubMed ID: 25408278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CORAL Software: Analysis of Impacts of Pharmaceutical Agents Upon Metabolism via the Optimal Descriptors.
    Toropova MA; Raska I; Toporova AP; Raskova M
    Curr Drug Metab; 2017; 18(6):500-510. PubMed ID: 28260514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSPR modeling of enthalpies of formation for organometallic compounds by SMART-based optimal descriptors.
    Toropov AA; Toropova AP; Benfenati E; Manganaro A
    J Comput Chem; 2009 Nov; 30(15):2576-82. PubMed ID: 19373829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.