BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26320645)

  • 1. Anisotropy resolved multidimensional emission spectroscopy (ARMES): A new tool for protein analysis.
    Groza RC; Li B; Ryder AG
    Anal Chim Acta; 2015 Jul; 886():133-42. PubMed ID: 26320645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate anisotropy recovery from fluorophore mixtures using Multivariate Curve Resolution (MCR).
    Casamayou-Boucau Y; Ryder AG
    Anal Chim Acta; 2018 Feb; 1000():132-143. PubMed ID: 29289302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the interaction of human serum albumin (HSA) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes in different aqueous environments using anisotropy resolved multi-dimensional emission spectroscopy (ARMES).
    Gordon F; Casamayou-Boucau Y; Ryder AG
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112310. PubMed ID: 35007857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES).
    Gordon F; Elcoroaristizabal S; Ryder AG
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129770. PubMed ID: 33214128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods.
    Casamayou-Boucau Y; Ryder AG
    Methods Appl Fluoresc; 2017 Aug; 5(3):037001. PubMed ID: 28584197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on effect of lipophilic curcumin on sub-domain IIA site of human serum albumin during unfolded and refolded states: a synchronous fluorescence spectroscopic study.
    Patra D; Barakat C; Tafech RM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():354-61. PubMed ID: 22398366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of μs dynamics of domain-III of human serum albumin during the chemical and thermal unfolding: A fluorescence correlation spectroscopic investigation.
    Sengupta B; Das N; Sen P
    Biophys Chem; 2017 Feb; 221():17-25. PubMed ID: 27912144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sucrose on chemically and thermally induced unfolding of domain-I of human serum albumin: Solvation dynamics and fluorescence anisotropy study.
    Yadav R; Sengupta B; Sen P
    Biophys Chem; 2016 Apr; 211():59-69. PubMed ID: 26930029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes.
    Abou-Zied OK; Al-Shihi OI
    J Am Chem Soc; 2008 Aug; 130(32):10793-801. PubMed ID: 18642807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods.
    Flora K; Brennan JD; Baker GA; Doody MA; Bright FV
    Biophys J; 1998 Aug; 75(2):1084-96. PubMed ID: 9675210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting time-resolved protein phosphorescence.
    Draganski AR; Corradini MG; Ludescher RD
    Appl Spectrosc; 2015 Sep; 69(9):1074-81. PubMed ID: 26253845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of non-enzymatic glycation on the unfolding of human serum albumin.
    Mendez DL; Jensen RA; McElroy LA; Pena JM; Esquerra RM
    Arch Biochem Biophys; 2005 Dec; 444(2):92-9. PubMed ID: 16309624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing nonenzymatic glycation of proteins by deep ultraviolet light emitting diode induced autofluorescence.
    Mukunda DC; Joshi VK; Chandra S; Siddaramaiah M; Rodrigues J; Gadag S; Nayak UY; Mazumder N; Satyamoorthy K; Mahato KK
    Int J Biol Macromol; 2022 Jul; 213():279-296. PubMed ID: 35654218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally stable harpin, HrpZPss is sensitive to chemical denaturants: probing tryptophan environment, chemical and thermal unfolding by fluorescence spectroscopy.
    Tarafdar PK; Vedantam LV; Podile AR; Swamy MJ
    Biochimie; 2013 Dec; 95(12):2437-44. PubMed ID: 24055159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic investigation of domain specific unfolding of human serum albumin and the effect of sucrose.
    Yadav R; Sen P
    Protein Sci; 2013 Nov; 22(11):1571-81. PubMed ID: 24038622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human serum albumin interaction with formononetin studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods.
    Li Y; He W; Dong Y; Sheng F; Hu Z
    Bioorg Med Chem; 2006 Mar; 14(5):1431-6. PubMed ID: 16275106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Biochem; 2010 Feb; 147(2):191-200. PubMed ID: 19884191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosine fluorescence probing of the surfactant-induced conformational changes of albumin.
    Zhdanova NG; Shirshin EA; Maksimov EG; Panchishin IM; Saletsky AM; Fadeev VV
    Photochem Photobiol Sci; 2015 May; 14(5):897-908. PubMed ID: 25722181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of quercetin with human serum albumin: a fluorescence spectroscopic study.
    Sengupta B; Sengupta PK
    Biochem Biophys Res Commun; 2002 Dec; 299(3):400-3. PubMed ID: 12445814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.