BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 26320713)

  • 61. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.
    Müller G; Kalyani DC; Horn SJ
    Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enzyme production by the mixed fungal culture with nano-shear pretreated biomass and lignocellulose hydrolysis.
    Lu J; Weerasiri RR; Liu Y; Wang W; Ji S; Lee I
    Biotechnol Bioeng; 2013 Aug; 110(8):2123-30. PubMed ID: 23456729
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material.
    Draude KM; Kurniawan CB; Duff SJ
    Bioresour Technol; 2001 Sep; 79(2):113-20. PubMed ID: 11480919
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A simple and fast method for the determination of endo- and exo-cellulase activity in cellulase preparations using filter paper.
    Luciano Silveira MH; Rau M; Pinto da Silva Bon E; Andreaus J
    Enzyme Microb Technol; 2012 Oct; 51(5):280-5. PubMed ID: 22975126
    [TBL] [Abstract][Full Text] [Related]  

  • 65. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes?
    Esteghlalian AR; Bilodeau M; Mansfield SD; Saddler JN
    Biotechnol Prog; 2001; 17(6):1049-54. PubMed ID: 11735439
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass.
    Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.
    Smith BT; Knutsen JS; Davis RH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):468-82. PubMed ID: 20177821
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.
    Banerjee G; Car S; Scott-Craig JS; Borrusch MS; Aslam N; Walton JD
    Biotechnol Bioeng; 2010 Aug; 106(5):707-20. PubMed ID: 20564609
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates.
    Malgas S; Thoresen M; van Dyk JS; Pletschke BI
    Enzyme Microb Technol; 2017 Aug; 103():1-11. PubMed ID: 28554379
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources.
    Sipos B; Benko Z; Dienes D; Réczey K; Viikari L; Siika-aho M
    Appl Biochem Biotechnol; 2010 May; 161(1-8):347-64. PubMed ID: 19898963
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery.
    Xu J; Xiong P; He B
    Bioresour Technol; 2016 Jan; 200():961-70. PubMed ID: 26602145
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house.
    Kovacs K; Macrelli S; Szakacs G; Zacchi G
    Biotechnol Biofuels; 2009 Jul; 2():14. PubMed ID: 19580644
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation.
    Menegol D; Scholl AL; Dillon AJ; Camassola M
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1455-64. PubMed ID: 27164962
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Tailoring a cellulolytic enzyme cocktail for efficient hydrolysis of mildly pretreated lignocellulosic biomass.
    Moya EB; Syhler B; Dragone G; Mussatto SI
    Enzyme Microb Technol; 2024 Apr; 175():110403. PubMed ID: 38341912
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modeling cellulase kinetics on lignocellulosic substrates.
    Bansal P; Hall M; Realff MJ; Lee JH; Bommarius AS
    Biotechnol Adv; 2009; 27(6):833-848. PubMed ID: 19577626
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cellulase activities in biomass conversion: measurement methods and comparison.
    Dashtban M; Maki M; Leung KT; Mao C; Qin W
    Crit Rev Biotechnol; 2010 Dec; 30(4):302-9. PubMed ID: 20868219
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.
    Olsen SN; Lumby E; McFarland K; Borch K; Westh P
    Appl Biochem Biotechnol; 2011 Mar; 163(5):626-35. PubMed ID: 20803262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.