These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 26320717)

  • 1. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.
    Rodrigues AC; Haven MØ; Lindedam J; Felby C; Gama M
    Enzyme Microb Technol; 2015 Nov; 79-80():70-7. PubMed ID: 26320717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw.
    Rodrigues AC; Felby C; Gama M
    Bioresour Technol; 2014 Mar; 156():163-9. PubMed ID: 24502914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin.
    Haven MO; Jørgensen H
    Biotechnol Biofuels; 2013 Nov; 6(1):165. PubMed ID: 24274678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover.
    Pribowo A; Arantes V; Saddler JN
    Enzyme Microb Technol; 2012 Mar; 50(3):195-203. PubMed ID: 22305175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.
    Lindedam J; Haven MØ; Chylenski P; Jørgensen H; Felby C
    Bioresour Technol; 2013 Nov; 148():180-8. PubMed ID: 24045205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics.
    Kellock M; Rahikainen J; Marjamaa K; Kruus K
    Bioresour Technol; 2017 May; 232():183-191. PubMed ID: 28231536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei.
    Eriksson T; Karlsson J; Tjerneld F
    Appl Biochem Biotechnol; 2002 Apr; 101(1):41-60. PubMed ID: 12008866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution.
    Rodrigues AC; Leitão AF; Moreira S; Felby C; Gama M
    Bioresour Technol; 2012 Apr; 110():526-33. PubMed ID: 22357293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content.
    Cannella D; Hsieh CW; Felby C; Jørgensen H
    Biotechnol Biofuels; 2012 Apr; 5(1):26. PubMed ID: 22546481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.
    Huang R; Guo H; Su R; Qi W; He Z
    Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The challenging measurement of protein in complex biomass-derived samples.
    Haven MO; Jørgensen H
    Appl Biochem Biotechnol; 2014 Jan; 172(1):87-101. PubMed ID: 24046255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate.
    Maurer SA; Bedbrook CN; Radke CJ
    Langmuir; 2012 Oct; 28(41):14598-608. PubMed ID: 22966968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.
    Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K
    Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling.
    Gomes D; Domingues L; Gama M
    Bioresour Technol; 2016 Sep; 216():637-44. PubMed ID: 27289054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
    Ko JK; Ximenes E; Kim Y; Ladisch MR
    Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented hydrolysis of acid pretreated sugarcane bagasse by PEG 6000 addition: a case study of Cellic CTec2 with recycling and reuse.
    Baral P; Jain L; Kurmi AK; Kumar V; Agrawal D
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):473-482. PubMed ID: 31705315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.
    Várnai A; Viikari L; Marjamaa K; Siika-aho M
    Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass.
    Sørensen A; Lübeck PS; Lübeck M; Teller PJ; Ahring BK
    Can J Microbiol; 2011 Aug; 57(8):638-50. PubMed ID: 21815831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.
    Rosgaard L; Pedersen S; Meyer AS
    Appl Biochem Biotechnol; 2007 Dec; 143(3):284-96. PubMed ID: 18057455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.